
Communicator
The Institute of Scientific and Technical Communicators

Summer 2012

Can you measure success?
Explaining the value of documentation

Keep up-to-date with the 
latest ANSI Z535.6 standard

Read the latest ISTC 
survey results

Using and implementing 
HelpServer

Practise your accessibility 
skills



Communicator Summer 2012

38 Authoring patterns

Global linking for flexible pattern reuse
Or how a distributed authoring team, including 
Owen Flatau, is using Flare and SVN to bridge the silos.

Who, why, what, and how
Within the Collaboration Infrastructure Business 
Unit (CIBU) of Cisco Systems, where I am one of 
a dozen or so technical communicators, there 
is a pressing need from field teams to provide 
solutions-based documentation.

Customers generally buy a solution that 
comprises a portfolio of our products, but 
our technical communicators are dedicated to 
individual product documentation. 

Owing to our legacy of rapid growth and 
acquisition, the team’s work suffers from a 
lack of consistency, in the usual content areas, 
such as style, terminology, and layout, in the 
processes and tools we use, and in the output 
types we generate.

We established a working group to 
standardise our working practices, around tools 
that we were already using, with the aim of 
improving consistency and thus paving the way 
for meeting the external need.

The working group soon realised that the 
central theme of our efforts would be a strategy 
for pattern reusability. That is, to make our 
authoring patterns – our processes, tools, 
layouts and eventually style and terminology 
– repeatable within the team. I use the term 
‘pattern reusability’ to distinguish our goal 
from the better understood ‘content reusability’ 
because we were so diverse in the use of 
repositories, tools, and outputs, that we needed 
to rethink the surrounding content framework 
before we could address the content itself.

Essentially, we wanted to synchronise, to the 
best extent possible, the editing environment 
for everyone; we knew we would need shared 
product family and model names, common 
conditional text rules, shared templates (called 
‘blueprints’ later on), reliable terminology, a 
common repository, and guidelines for keeping 
all of those good things in check to allow the 
reusable content to proliferate.

Process and environment
In retrospect, drafting this article, it may look 
like this was a carefully planned process; I 
want to dispel that nascent myth because it 
has actually been an organic, backburner type 
of project, which has rumbled on behind our 
daily project work, as and when we can afford 
the time, for over a year now. It simply is not 
realistic to expect a block of reserved time to be 
allocated to do this kind of thing properly, and 
none of us would have it any other way.

During the design phase we met weekly, for 
two to three hours at a time, to argue, catechize, 

digress, and assign tasks. We recorded our 
decisions and to-do lists in a team wiki.

We settled on MadCap Flare as the editing 
environment, because its global linking features 
are capable of delivering the goods, but we 
also needed a safe and accessible place to store 
our source. Our regional offices have separate 
fileserver infrastructures, so file shares were 
ruled out; furthermore, our sites were in 
the process of being brought into the Cisco 
production network which, at the time, was 
raising more questions than it answered. 

We decided on using Subversion (SVN), a 
version control system that was already being 
used by technical communicators in our Oslo 
office. Our representative there arranged a new 
repository for us and mapped the process of 
getting accounts and installing TortoiseSVN (a 
client for the Subversion server).

About that time, MadCap introduced 
integration with SVN but our first experiences 
of it steered us towards the more established 
Tortoise option. We may go back and try again, 
now that the MadCap feature is more mature.

This combination, of Flare and SVN, suits 
our pattern reusability goal because it enables 
the framework and content to be edited 
independently, and locally, by any technical 
communicator in the team, yet protects the 
master repository for us all. 

The TortoiseSVN documentation site has a 
great article that explains how the copy-modify-
merge versioning model is different from – and 
perhaps more productive than – the classic lock-
modify-unlock model, with which most of our 
team are more familiar.

So why did we eschew a more conventional 
approach, such as a content management 
system (CMS)? Simply put, we were in a state 
of transition, of administrative applications, 
processes, and tools; we all felt the inevitable 
drop in productivity, and we opted for a 
solution over which we could exercise some 
control. We also weren’t certain about what 
other technical communicators in Cisco were 
doing, whether there were existing solutions, or 
whether we had time or budget to research and 
customise a ‘proper’ CMS. In this environment, 
the lightweight combination of Flare and SVN 
was very appealing. 

However, none of us had done this before, not 
on this scale, with Flare, and we knew that there 
was going to be a hill to climb. I was inspired by 
what Thomas Bro-Rasmussen’s Single Sourcing 
with MadCap Flare talk offered, and I remember 
distinctly how he said that although setting it 

The lightweight 
combination of Flare 
and SVN was very 
appealing.



Communicator Summer 2012

39

up was tricky, once done it was well worth the 
effort: because it meant no-one had to remember 
whether this or that version of a shared item 
was up-to-date or divergent.

Design considerations
With the environment in place, what things did 
we want to include in the shared patterns, what 
things needed to remain independent?

First there were the obviously common 
elements: page layouts, stylesheets, (Flare) 
templates – which is why we chose the word 
‘blueprints’ instead – and certain boilerplate 
topics such as the copyright and title pages. We 
had few arguments and many tasks.

Then there were items that required more 
thought: global and local variables, condition 
tags, TOCs. We had moderate arguments that 
resulted in small, difficult, and sometimes 
controversial tasks.

Finally, there were aspects of our utopian 
vision that threatened to halt the project 
altogether: shared glossary, library structure, 
import file philosophy, checkout depth, content 
with multiple tags applied. Deep investigation 
was required and we are still arguing about 
some of these today.

So how would we actually do the sharing? 
Early in the design phase we developed a set of 
principles that would help ensure the veracity 
of common patterns without impacting the 

independence of our team mates who did not 
need to be at the shared-content table. We 
probably owe a lot to other Flare evangelists 
here, but our first principle was to collect 
the obviously common elements into a 
global ‘master project’. Only one person was 
authorised to edit that project at first, but the 
number of related tasks grew and we started 
sharing the work.

Of course, that was only the first principle, 
and the implementation details would probably 
bore you. The more interesting principles – 
those about contributing, discovering, and 
fetching shared content – we derived from 
fruitful arguments and whiteboard scribbles 
that eventually became our ‘global sharing 
architecture’. Figure 1 shows the centrepiece 
with which we beguiled our colleagues and, as 
we argued over it and refined it, we recorded 
the guiding principles that would keep it from 
descending into chaos, errm, democracy.

We stumbled upon a workable solution and 
were naturally eager to sell it to the rest of the 
team.

The global sharing architecture
Our global sharing architecture, shown in 
Figure 1, comprises three source layers and one 
output layer; the top two layers are the ‘single 
source’ for the working projects in the third 
layer. The Global assets layer is the highest 

Master project

Future expansionSharing library Blueprints

(project has no 
shared content)

(projects reusing shared items)

Sharing layer

Global assets

(project has 
items to share)

Working projects

Outputs Key
Global assets

Unique items

Blueprints

Shared items

Import

Promote

Banned

Figure 1. Global sharing architecture

We stumbled upon 
a workable solution 
and were naturally 
eager to sell it to the 
rest of the team.



Communicator Summer 2012

40 Authoring patterns

source; it contains only the master project 
which houses all the globally reusable items. 
Contributions to this project are well thought 
out and checked over with the team before 
being committed. It is the least volatile piece 
of the puzzle and all projects must import the 
global assets, whether directly or indirectly.

The Sharing layer contains a Blueprints 
project and a Sharing library project; the former 
for what we traditionally call templates (an 
empty, repeatable, working project conforming 
to a particular output type) and the latter for 
keeping reusable content. Although the layer 
has only two projects at present, expansion is 
possible if either project becomes unwieldy or if 
it becomes logically sensible to expand.

This layer is expected to be less volatile than 
the Working projects layer but will change more 
often than the Global assets layer.

The third layer contains the working projects 
from which we generate our customer-facing 
outputs. Golden rule: Working layer projects 
should not rely on each other’s material. 
However, they must have the global assets; they 
may – or may not – be based on blueprints, they 
may promote or import shared content, or other 
project files, but only up to or down from the 
Sharing layer, not sideways, and they may or 
may not have unique content items.

The Outputs layer contains one or more 
outputs from each working project – for 
example in different media. Each output is 
unique, although they may be derived from the 
same content.

Is one shared project really future-proof?
We argued long and hard about the organisation 
of the Sharing layer; we interviewed our 
colleagues about the content they expected to 
be able to share and discovered that we were so 
‘siloed’ that at first we wanted geographically 
named folders in SVN! We had to re-examine 

our beliefs, think outside the whiteboard for 
a bit, but eventually our product families 
provided a sensible option. It satisfied the 
geography pundits, by happy accident, but also 
aligned closely with our branch of the metadata 
framework (commonly known as MDF, it is 
Cisco’s taxonomy for product classification).

But why did we restrict it to one project? 
Wouldn’t the content grow large, and quickly? 
We argued some more and decided to be more 
adaptable than structured: if no one could 
figure out what the best empty building would 
look like, could we arrange the foundation 
in such a way to make any shape of growth 
possible? These are the reasons that convinced 
us it would be possible:
�� It is easy to publish an exhaustive, ‘knowledge 
base’ type of output, enabling authors to use 
Flare search for shared material

�� There is no guessing where to point the 
import files

�� We can cascade the global assets via the 
sharing layer to reduce importing complexity

�� If we identify and create appropriate structure 
as required, the library can later be split along 
well-established lines (and just change or add 
import files in the Working projects layer)

�� It is a high-impact place for our editor to 
focus on style, terminology, and other aspects 
of content consistency. Improvements here 
will have multiplying benefits.

What about the TortoiseSVN side of this story?
The SVN repository structure needed to change 
to reflect the new thinking, but we did not 
want to mirror the architecture. That is, we did 
not want all the sharing and working projects 
nesting in the master project folder, or vice 
versa! Our guiding light at this point was to 
keep the folder structure as flat as possible.

We opted to dismantle the repository silos 
and rebuild the root along the product family/
MDF lines we had already established. The 
simplicity of doing this task with TortoiseSVN 
immediately became apparent: all we had 
to do was ask everyone to make sure they’d 
committed their own work, rearrange the 
folders locally, then commit the whole 
repository.

We put the top two layers of the global 
sharing architecture into one folder at the root, 
so that a fully recursive checkout would not 
be required to get the entire ‘single source’. 
We agreed that it would be a good practice for 
everyone to check out at least this folder and 
also their own product family’s root folder. 

The re-organisation was over in a day. There 
were some tears over broken working copies, 
but nothing that a fresh checkout and a tissue 
couldn’t solve.

Within each product family folder, the owning 
authors were given autonomy over how the 
organisation of their working projects was done, 

Of course there are 
setbacks, hurdles, 
and mudslides; it 
would be foolish to 
imagine that this 
project could happen 
without them.

The rules
1.	 No sideways importing: to share between working projects, promote then 

import.
2.	 Don’t speculate: to be eligible for sharing, an item must be destined for at 

least two working projects.
3.	 Communicate* when promoting or editing shared content; other working 

projects may be affected by your changes. 
*You can use ‘diff’, to compare between versions but it’s quicker for everyone if 
you communicate the essence of your changes.

4.	 No spurious editing: if shared content is written in a way that seems 
wrong, check with the other party and editor before ‘just fixing it’.

5.	 Avoid stagnation‡: sharing layer projects must immediately refresh global 
assets when the master project is refreshed. 
‡Some stagnation in the working layer is ok: if you have imminent outputs, 
perhaps in review, you may not want the extra effort and risk of newly 
modified assets.

6.	 No assumptions: use conditions to keep shared content safe for everyone. 
Tag new content with your relevant product or product family tags so that 
other working projects can exclude it by default.



Communicator Summer 2012

41

provided that they honoured the no-nesting 
principle.

Some of our emerging best practices around 
the use of TortoiseSVN are:
�� Update before starting work, commit before 
the end of the day (or more often).

�� Add Flare’s ‘Output’ and ‘Analyser’ folders 
to the ignore pattern – especially on shared 
projects.

�� Add meaningful comments (even though 
we’re forced to add comments it’s too easy to 
be lazy).

�� Branch your working project just after your 
outputs ship, and rename the branch with 
product version.

�� ‘Don’t panic!’

Team training
Although the team may have been aware of 
the working group’s efforts – because we had 
been sprinkling hints and asking for input – 
the emails were long and quite abstract and 
may have been ignored. The debate about 
conditional tag colours was a notable exception. 

We knew we couldn’t expect people to buy in 
to a solution with so little detail.

We chatted with colleagues in our local teams, 
showed them the picture and explained the 
principles. Perhaps surprisingly, the framework 
we had designed was positively received. We 
recorded and considered the concerns and 
the new ideas. No-one objected in principle to 
what we had planned, which was another major 
hurdle crossed.

We had been keeping track of our efforts, so 
the background work for training purposes was 
largely complete. 

With our manager’s support, we proposed a 
three-stage demonstration: first the TortoiseSVN 
basics – there was justifiably a bit of fear about 
this tool, being new to most; second, how to 
instantiate a Flare project with the master 
project assets, and finally, pulling TortoiseSVN 
and Flare together to retrieve and promote 
shared content from the sharing library. 

We’re currently about halfway through this 
stage, and it’s going well while we continue with 
the remaining implementation steps.

The final piece of the training puzzle is being 
available to support colleagues when they 
encounter issues we did not anticipate (I’ve 
learned a lot about TortoiseSVN this way). We 
have invested heavily (in time and effort) in the 
success of this initiative and we want to keep 
our team on side as we address the remaining 
challenges.

Implementation progress and results
�� The team has now been using TortoiseSVN, in 
an escalating capacity, for well over a year. 

�� We’ve been using the master project for about 
the same period, and have a well-established 
consistency in the look, the front matter, back 

matter, and layout of all our Flare outputs.
�� The blueprints are starting to filter in, making 
the content and structure more predictable 
across some document types. This is an area 
we are planning to expand, as more of our 
legacy documentation is being migrated to 
Flare.

�� The training phase is underway, and is 
appreciated by the team.

�� The Sharing library and most of the thinking 
and implementation behind it is finished. 
We have yet to demonstrate it properly 
and start using it with purpose, but several 
team members are encouraging us forward 
impatiently: the benefits are now too tangible 
to ignore.

Challenges yet to be savoured
Of course there are setbacks, hurdles, and 
mudslides; it would be foolish to imagine that 
this project could happen without them.

Some of the challenges we look forward to 
overcoming are:
�� Different toolsets; in some cases this is 
justified. As the patterns become routine 
though, I expect we will gain momentum. 
Our San Jose colleagues (within our business 
unit’s documentation team) are going to move 
over to Flare, which is a good step forward.

�� Non-SVN content silos; again, this can still be 
justified as we haven’t yet provided the means 
by which to benefit from sharing content 
with the new framework. Geographically 
restricted file shares can seem a better idea 
than an SVN repository if there is no apparent 
commonality with products from other 
regions.

�� Terminology; this is a bigger nut than the 
best practices working group can crack alone. 
Our team editor is hard at work developing, 
promoting, and integrating our shared 
terminology within the wider organisation.  C

References
Single Sourcing with MadCap Flare 
www.uaconference.eu/conf2011.html#frametoflare, 
a talk by Thomas Bro-Rasmussen, June 2011.
TortoiseSVN documentation 
http://tortoisesvn.net/docs/release/TortoiseSVN_
en/tsvn-basics-versioning.html, accessed 
09/05/2012.

Owen Flatau MISTC� is a technical 
communicator within the 
Collaboration Infrastructure Business 
Unit at Cisco Systems. He works closely 

with three colleagues formulating best practices to 
improve a range of product documentation and user 
assistance. He is a Flare fan and an avid reader of the 
TortoiseSVN docs.
W: www.cisco.com


	From the editor
	Letters
	President’s view
	Mentoring scheme for Junior members
	Online groups
	Professional Development and Recognition
	Latest in localisation trends at GALA 2012
	TCeurope Colloquiums in Portugal
	Local area groups
	Results of the 2012 survey
	Communicating value
	Getting started with mobile learning
	ANSI Z535.6: new and improved
	Low-maintenance documentation techniques
	Flex your new accessibility muscles
	Getting your stories straight!
	Camtasia for Mac 2
	Global linking for flexible pattern reuse
	Indexing: an overview
	HelpServer 4.6 review
	Global diversity and localisation issues
	The Adobe technical communication Colum(n)
	Thinking of editing some work?
	Real-life dilemmas
	Real-life responses
	Read stories about fonts
	The MadCap column
	Doing DITA with confidence
	A day in the life



