
USER GUIDE

MADCAP FLARE ONLINE

What's New Guide



Copyright © 2025 MadCap Software. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the
purchaser's personal use without the written permission of MadCap Software.

MadCap Software
1660 17th Street, Suite 201
Denver, Colorado 80202
858-320-0387
www.madcapsoftware.com

THIS PDF WAS CREATED USING MADCAP FLARE.



CONTENTS

CHAPTER 1

Introduction 5

CHAPTER 2

Flare Online 6
Why? 7
What is Different? 8
Flare Online vs. Flare Desktop 9

CHAPTER 3

Collaborative Authoring 11
Permission Required? 13
What are the Changes to the Editing Workspace? 14
Visible Changes From Others 17
Do I Have to Worry About Conflicts? 19
Multiple Authors — How to Edit an Existing File 21
Committing Edits 26
Selecting Ready to Commit 28
Using Version History 30
Workspace Overview 38
What’s Noteworthy? 45

CONTENTS iii



APPENDIX

PDFs 46

CONTENTS iv



CHAPTER 1

Introduction
Following are new features available in Flare Online.

For more information about each feature discussed in this manual, open the Help system and refer
to the "What's New" topic. Links are provided in some feature descriptions, taking you to topics that
contain additional information and steps.

"Flare Online" on page 6

n MadCap Central renamed Flare Online

n Text and logo changes throughout interface

n Think of legacy Flare as Flare Desktop

"Collaborative Authoring" on page 11

n The collaborative authoring feature lets multiple people work on an online document
simultaneously (i.e., collaboratively and concurrently edit the same file at the same
time)

n Multiple users can see changes from other authors in real-time, without the worry of
losing work or running into conflicts

n A Workspace Overview promotes work management by seeing at-a-glance status
such as who's working or what's been completed

n The workspace offers project coordination that brings each team member's
authoring work together in one centralized place

CHAPTER 1  5



CHAPTER 2

Flare Online
MadCap Central has been renamed Flare Online. It's the same cloud-based application that you've
come to know (with some exciting new collaborative authoring benefits also now available); it just
has a new name and a somewhat new look. As far as legacy Flare is concerned, you can now think
of it as Flare Desktop.

This chapter discusses the following:

Why? 7

What is Different? 8

Flare Online vs. Flare Desktop 9

CHAPTER 2  6



Why?
The reason for this change is that, over time, Central has grown so much in terms of authoring
features that it really has morphed into a cloud-based version of Flare. A Flare author could start a
project, work only in the cloud (without ever needing or touching Flare Desktop), and end up with
state-of-the art online and print-based outputs.

CHAPTER 2  7



What is Different?
In the interfaces for both Flare Online and Flare Desktop, you will notice that the text "Central" has
been replaced throughout with "Flare Online." There might be a few "corner" locations where Central
is still used, or behind-the-scenes occurrences. Mostly, however, the new term replaces the old
term.

Along with the text changes, there is a new color scheme and logo for Flare Online.

CHAPTER 2  8



Flare Online vs. Flare Desktop
If Flare Online is becoming more and more a standalone version of Flare Online in the cloud, then
the obvious question is "Do I need Flare Desktop at all?" The answer to that is going to be different,
depending on your needs. Some people might only need Flare Online. Others might only need Flare
Desktop. And still others might need both, involving the movement of content between the two
applications.

n Flare Online is a great choice if you want a very simplified process with the most essential
documentation elements, as well as the special offerings that are available only in the cloud
(e.g., hosting output, collaborative authoring, analytics).

n Flare Desktop is ideal if you must work locally and need advanced authoring features that
have been developed over decades (e.g., context-sensitive Help, meta tags, heavy
customization of print-based outputs).

To make an informed decision, you should consider the benefits of both applications.

CHAPTER 2  9



Flare Online Benefits Flare Desktop Benefits

n Collaborative authoring

n Integrate with ChatGPT (AI Assist)

n Configure single sign-on (SSO)

n Host output with custom domains and
vanities

n Publish private output

n View analytics on output

n Assign user permissions

n Use integrated checklists

n Collaborate with reviewers

n Create and manage tasks

n Integrate with Slack

n Easy cloud-based translation process

n Customize dashboards and widgets

n Communicate via message center

n Highly specialized authoring features

n Editor structure bars

n Dynamic topic preview

n
Full-featured text editor

n
Heavy-duty print-based customization

n
Micro content (enhanced search,
chatbots, etc)

n Context-sensitive help

n Link viewer

n
Advanced cascading stylesheet editing

n
Integrated responsive web design

n Learning and development integration

n Various search engine choices

n
Creation of publishing destinations

CHAPTER 2  10



CHAPTER 3

Collaborative Authoring
Until now, each person authoring files in Flare Online worked independently. That individual was
unaware if others were authoring the same files and what they were adding, removing, or changing
in those files. In addition, if two authors were simultaneously editing the same file, the first person
to commit the file had precedence. When the second person committed the file, that author was
alerted to the issue and prompted to refresh to get the latest files. Unfortunately, that could result in
the second author losing changes and having to redo edits.

Starting with this release, authors work collaboratively in files, with full transparency of edits from
everyone in that project. Some benefits that collaborative authoring offers are:

n Working on an online document simultaneously (i.e., the same file at the same time).

n Awareness of changes from other authors in real-time without the worry of losing work or
running into conflicts.

n At-a-glance status such as who's working or what's been completed.

n Authoring and coordinating work together in one centralized place.

CHAPTER 3  11



This chapter discusses the following:

Permission Required? 13

What are the Changes to the Editing Workspace? 14

Visible Changes From Others 17

Do I Have to Worry About Conflicts? 19

Multiple Authors — How to Edit an Existing File 21

Committing Edits 26

Selecting Ready to Commit 28

Using Version History 30

Workspace Overview 38

What’s Noteworthy? 45

CHAPTER 3  12



Permission Required?
Editing content and project files is an activity available to users with the Author status. By default,
users with Author status have the following permissions set:

n

If this is deselected, then viewing files in a read-only mode is allowed. On the left side of the
page, the Files vertical three-dot menu is not available.

n

If this is deselected, the XHTML in the Code view is read-only.

Editing code is regarded as a capability for an advanced user. If not done properly, the code
can become malformed quickly. Administrators can prevent users from editing the code by
deselecting the Edit Code permission.

For more information about permissions, see the Help system.

CHAPTER 3  13



What are the Changes to the Editing
Workspace?

To accommodate for collaborative authoring, you will notice some changes to the user interface.
These improvements will slightly impact your authoring and editing workflow.

New for this release is a Workspace tab in the main toolbar. This replaces the Files tab. Both single
and multiple authors will use the workspace for writing and editing files.

CHAPTER 3  14



n Cursor and selection indicators There are visual cues that display for each user, indicating
that multiple people are using the file and other authors are highlighting text selections.

n Filter The Files tree includes a filter button. Use to search project files based on file type or
file status.

n New File and Upload File(s) Buttons are located in the main toolbar, one for creating a new
file and one for uploading file(s). Previously, this functionality was launched from the Files
tree three-dot menu.

n Workspace Overview Click the button to initiate an overview, which gives a report on the
workspace. Use to manage your workspace and to identify items, such as files that are not
committed, user status, and what needs to be done.

n Status indicators The Files tree shows at-a-glance status. For example, a purple circle next to
a file indicates that it has uncommitted changes.

n User status A user's avatar or initials display in the editor's local toolbar when editing a file.
Avatars of any other authors working in the file will display next to yours. Your avatar is
unique because you can click the drop-down next to it and select your status from the menu.

n Version history When editing a file, a timeline displays with a history of file commits and
versions including edits.

CHAPTER 3  15



States of the Workspace
When you and other authors are editing a file, it is the same file, in a working state, for everyone.
That is why you can see changes happening.

n In Progress A file is in a non-committed state and is opened or being edited by authors. The
version history indicates the file is in progress and displays the number of edits and users in
the workspace.

n Ready to Commit (Optional) A file is done being edited. The file is saved locally, but it is still a
working copy and needs to be committed to the repository. Use this state if you are done
editing but you notice others are still working on the file. That way you are not committing
other authors' changes before they are finished.

n Commit A user or manager can commit a final version of file changes live to the repository.
The action of committing (e.g., pressing the Commit button in the dialog) saves the edits and
commits changes from all users—not just your changes—to the repository. When a file is
committed the user statuses are cleared.

User Status
For every author in a file, you will see each user's avatar with status in the editor's toolbar.

n Avatar (or initials) with a purple circle This indicates a user is In Progress with a file.

n Avatar (or initials) with ... The three-dot icon indicates that a user has a file open and is
actively editing it. If you click off the current file to open a different file, the icon changes to
show that you are In Progress (i.e., a purple circle).

n Avatar (or initials) with a check mark An author is done making edits and has indicated
this by selecting "Ready to Commit." The file is not committed yet. If a commit occurs, the
check mark disappears and the version history shows the file as committed.

NOTE If there are too many users to show each avatar in the toolbar, a three-dot icon
indicates more users .

CHAPTER 3  16



Visible Changes From Others
When a file is selected from the Files tree, it opens in the Content Editor—in a working state.

A single user can begin making edits to the file. Once editing occurs, the version history on the right
is activated and is updated as edits happen. When the editing is done, the file can be committed
into the repository.

If multiple users are using the same file, you can see the changes the other authors are making to it
in real-time. There are visual cues that display for each user, indicating that multiple people are
using the file and other authors are highlighting text selections.

EXAMPLE Two authors are using the same file in the editor. Notice the cursor and
selection functionality that is visible to each author.

CHAPTER 3  17



As soon as someone starts editing the file, edits are displayed in real-time for each user,
the Commit button is enabled, and the version history is activated for the file.

(After a short time, the name associated with a cursor and selection highlights of content
disappear to remove unnecessary marks from the workspace.)

CHAPTER 3  18



Do I Have to Worry About Conflicts?
One of the biggest benefits of collaborative authoring is that you can avoid conflicts that you might
otherwise encounter, at least when authors are editing files in the same branch in Flare Online.
That's because each author's changes are visible and automatically incorporated when the commit
is made. You can collaboratively and concurrently author a file without the worry of losing work or
running into conflicts.

Keep in mind, however, that conflicts could still eventually arise later under certain circumstances.
For example, you might have made changes to a file in Flare Desktop, and when you do a pull, you
might see conflicts with changes made in the same file in Flare Online. Another example is when
you use Flare Desktop to merge files from one branch into another; if changes are different in the
same file, you might need to resolve conflicts.

Auto-Merging Files With External Commits
Other authors can work in the same file as you using an external source, such as Flare Desktop.
Since Flare Online uses collaborative real-time technology it does not lose track of external changes
or create conflicts, but rather invokes an auto-merging process where you are always guaranteed a
valid document.

For example, you are working on a file, and someone else edits the same file in an external source
and "pushes" the change to Flare Online. When you commit your changes to the file, Flare Online
detects external commits and starts the auto-merge process. You can choose to review the
external commits, or proceed to commit merged changes.

CHAPTER 3  19



EXAMPLE The following is common auto-merging workflow. Imagine a project is bound
between Flare Online and Flare Desktop, and two authors are editing the same file, on the
same branch, in the same project.

User 1 Open a file in Flare Online's Content Editor.

User 2 Open the same file, but in an external source (e.g., Flare Desktop).

User 2Edit the file by changing the content.

User 1 Edit the same file by changing the content.

User 2 Commit and push changes in Flare Desktop to the remote repository (i.e., Flare
Online). See the Flare Desktop Help.

User 1 Commit the same file in Flare Online's editor. Clicking the Commit button starts the
auto-merge process. Upon the initial commit, the outside edits (or external commits)
display in the workspace.

User 1 Cancel to review the external commits in the workspace, or proceed to commit
merged changes.

NOTE The version history and your working copy of the file in the Content Editor do not
display external commits merged until you attempt to commit the file (even though behind-
the-scenes external commits exist in the repository).

NOTE Flare Online is a Git-based system, where files are version controlled and tracked
using the system's source control. The system implements "rules" for resolving possible
conflicts. The platform allows for secure co-authoring from anywhere with any device, and
accessibility to your online files from the Git repository with no memory or performance
impacts.

CHAPTER 3  20



Multiple Authors — How to Edit an
Existing File

For multiple authors editing the same file at the same time, the following workflow serves as a
guide.

1. On the left side of the Flare Online interface, click Projects.

2. Select a project to open it.

3. Click the Workspace tab at the top of the screen.

4. (Optional) From the drop-down at the top of the interface, you can select a branch for the
edits.

5. (Optional) Click . The Workspace Overview opens to display various items (e.g., status,
authors, type) about edited files in a project. (If files are already in a working state, the Open
Workspace Overview button shows with a circle in the upper-right corner .)

6. From the left side of the page, expand the existing folders to navigate to a file. You can also
click to search for a specific file.

CHAPTER 3  21



7. Select a file. It displays in the editor to the right. The right gutter switches from showing
project activities to displaying a version history for the file.

8. Click in the workspace and make an edit (this activates the file in an uncommitted state for
editing, auto-sets your status to In Progress, enables the Commit button, and begins to
populate version history). Use the toolbar at the top of the editor to manage the content. Also,
the tabs at the top of the editor (i.e., Content, Code, and Commits), allow you to switch modes
so you can edit the content or markup, and view commit details.

CHAPTER 3  22



NOTE The tracking changes option is off by default for collaborative authoring. From
the Content Editor's toolbar, click Toggle Tracking Changes to enable or disable the
feature.

CHAPTER 3  23



9. When you are done editing a file, it needs to be committed into the Git repository. You can
look at the local toolbar or the Workspace Overview to see the status of others.

Do one of the following:

n If you determine that you are the last one to finish editing the file, then it is safe to
commit the file. From the upper-right corner of the workspace, click Commit. (The
Commit dialog will be free of a warning about other users in the file.)

Alternatively, you can use the Workspace Overview to perform the commit operation.
When a file or many files are in a Ready to Commit state, you can commit them one at a
time or in bulk.

n If other authors are still editing, you can let others know that you are finished with the
file. From the local toolbar, select the drop-down by your avatar and click Ready to
Commit.

When all authors have indicated they are done and the file is ready, then any author or
manager can commit the file. If this is the case, click Commit.

NOTE If multiple files are In Progress, but only one is marked as Ready to
Commit, the Commit button is active. This is because you do not have to wait
until all the files are complete before committing them. For example, an author
goes on vacation but the In Progress state for the file needs to be committed
before the author returns.

CHAPTER 3  24



NOTE If other authors are still working on a file and their statuses indicate In
Progress, you can still perform a commit (although you should probably
communicate with them first). If you do commit a file while other users are in
this state, they will see a notification in their editor.

10. In the Create New Commit dialog, verify the new file path, and enter a Commit Message.

11. Click Commit.

NOTE With multiple authors, it is the user's responsibility to be aware of other people
editing the same file.

NOTE If an author is editing a file, but never commits the file to the repository, another user
(author or manager) can commit the file at any time.

CHAPTER 3  25



Committing Edits
Why do I have to commit edits? If you open and view a file, it is in a committed state in the project’s
repository. If you click to edit a file, it then enters a “workspace mode,” essentially making a working
copy of the file from the repository. In this mode, the file is in a non-committed state with pending
changes. When editing is completed, the file needs to be committed back to the project’s
repository.

In general, be aware of the following when committing edits:

n Single file If you are editing a file and click Commit, you are committing what you are looking
at in the editor. It can contain edits just from you (one user), or edits from several authors in
the same file. (You can also commit a single file via the Workspace Overview.)

n Multiple files Instead of committing a single file, you can bulk commit multiple files at once.
Note that many files can be in an uncommitted state which might contain edits from you and
other authors.

n Navigating to other files When you work in a file, you can move to another file and work in
that, then move to a third file and make changes, and so on. In other words, you do not need
to commit an open file before navigating elsewhere. The changes in each file are
automatically saved, but they won't be added to the repository until you (or another author)
finally perform a commit.

n Committing edits can affect other users Because collaborative authoring is always
happening, authors performing a commit are doing so not only for their changes, but also for
any other author's changes for the same file. For this reason, it's important to stay in
communication with other authors to make sure you are not committing changes that they
do not yet wish to be committed. However, the editing process includes safeguards and
visible cues in the interface to commit files without issues.

CHAPTER 3  26



How to Commit Edits
Do one of the following:

n In the Content Editor, from the upper-right corner of the workspace, click Commit.

n In the Workspace Overview, select a file (i.e., the check box next to the file in the grid) and
from the upper-right corner click Commit. Alternatively, click the vertical three-dot icon next to
the file and select Commit. You can bulk commit files with edits.

NOTE It is a best practice to simultaneously commit all related files based on the changes
you are making. For example if you edited four files to complete a changed feature, then
commit all four files together when your changes are done. This ensures a completed
collective version of your work in the revision history that you can view and revert back to.

NOTE Until commits are made, changes from those files will not be included in any builds
that are generated.

CHAPTER 3  27



Selecting Ready to Commit
What if you are finished making changes in a file and do not plan to make any more, but other
authors are still working in that file? If you perform a commit, you are going to commit their
changes as well, and they might not want that.

Fortunately, there is an alternative, you can click your small avatar at the top of the file being edited,
and from the drop-down you can select Ready to Commit. This is simply a way of signaling to
others that they are free to perform a commit for your changes as well as theirs.

If you do happen to click the Commit button when there are still uncommitted changes from others
in the project, you will see a message warning you of this. (If other users have all selected Ready to
Commit then you will not see the warning.)

Of course, you can ignore the warning and continue with the commit, but this will commit changes
for others at the same time.

CHAPTER 3  28



NOTE If you set the status to Ready to Commit, but you realize you have more changes to
make, you can update the status again. From the drop-down next to your avatar, select In
Progress. Or, from the Workspace Overview, select the file, and click the Change My File
Status button to update it.

CHAPTER 3  29



Using Version History
The version history area showcases more benefits of collaborative authoring. It maintains a
revision history of changes in the project's repository where you can access commit details, view
previous versions, and restore a version if need be. It also displays a count of edits and users
working on a particular file in the workspace.

The major sections of version history are the workspace and the repository areas. The workspace
tells you about an uncommitted working copy of the file. The repository tells you about the
committed versions of the file in the repository. The version history for a certain file can get quite
long depending on the amount of work applied to it.

CHAPTER 3  30



Following are a few things to know about the version history:

n The last committed version always displays in the repository area. When the history is
expanded it shows from the end, not the beginning. In other words, the latest version displays
first at the top of the list, and older versions move down in the list.

n The edits number can get high (e.g., 254 edits). Edits are counted per action (i.e., roughly one
character change equals one edit). The system controls the count of edits by auto-bundling
changes (i.e., creating a working version of the file in the repository) between commits, every
30 minutes.

n The version history is updated based on the branch; and there is only one workspace per
branch.

How to View a Previous Version
1. On the left side of the Flare Online interface, click Projects.

2. Select a project to open it.

3. Click the Workspace tab at the top of the screen.

4. (Optional) From the drop-down at the top of the interface, you can select a branch for the
edits.

5. From the left side of the page, select a file. The last committed version displays in the editor,
and the version history area shows on the right side of the screen.

6. In the version history area, click Show History. Upon selection the button changes to Hide
History—so you can collapse the history. If revisions exist for the file, the timeline expands to
show the versions (i.e., original when it was created, auto-bundled saves between commits,
and committed files.)

CHAPTER 3  31



CHAPTER 3  32



7. Select a previous version. (To select an auto-bundled version, you might need to click the
down arrow to expand the timeline further.)

8. The editor displays the version selected. You might notice older edits.

9. Click Go to Workspace to return to the current working version.

NOTE To help identify certain versions, there are a number of clues in the timeline to guide
you. Ask yourself if the version you are looking for was committed to the repository, or was
it auto-bundled? If committed, do you know who performed the commit? Do you know the
date and time of the needed version? Do you know of edits to specifically look for? If the file
is a committed version, you can also click the information icon to view detailed changes for
the commit.

CHAPTER 3  33



How to Revert to a Previous Version
You can revert to a previous version of the file (i.e., to the original version, a committed version, or
an auto-bundled version).

1. On the left side of the Flare Online interface, click Projects.

2. Select a project to open it.

3. Click the Workspace tab at the top of the screen.

4. (Optional) From the drop-down at the top of the interface, you can select a branch for the
edits.

5. From the left side of the page, select a file. The last committed version displays in the editor,
and the version history shows on the right side of the screen.

6. In the version history area, find the instance of the file that you want to restore. (You might
need to click Show History or expand auto-bundled versions in the timeline.)

TIP It might be a good idea to select the version and view it first, before reverting it,
just to make sure that version is the one you want.

7. Click (Revert to this version).

This action copies the version as a new version, and records it as such in the workspace
section.

CHAPTER 3  34



8. The Revert dialog opens. If no other users are editing the file and it is safe to revert it, click
Revert.

CHAPTER 3  35



NOTE If other users are detected as working in the file that you want to revert, the
Revert dialog will warn you.

In this case, you might want to click Cancel. Then, communicate with other team
members about the conflict, and decide what action to take that works for your team.

9. Even though the revert updates the workspace version to what it was, it still needs to be
committed to the repository. Click Commit in the upper-right corner of the editor.

10. In the Create New Commit dialog, enter a Commit Message.

11. Click Commit. The reverted file displays as the latest committed version in the repository.

CHAPTER 3  36



NOTE If other authors are editing a file that is reverted, they will see a warning banner
display at the bottom of the editor alerting them to the fact. Unless your intent is to
overwrite other people's content, it is best to determine the status of the workspace and of
other users to avoid problems.

EXAMPLE Multiple users are collaboratively editing a file. One user accidentally deletes all
the contents of the topic (and the other users notice deleted text in real-time as they work).
The team communicates about the issue and all agree to revert to a previous version of the
file. The advantage to this feature is that you can select a previously committed file or
select one of the auto-bundled versions to restore. One of the authors is able to identify the
version where all the content and most recent edits exist, and reverts to it. The others see
the reverted file in their own editor and continue editing until they are ready to commit.
According to the timeline, the new version of the file displays at the top of the history as the
latest version.

CHAPTER 3  37



Workspace Overview
The Workspace Overview is essentially a report of the project's current collaborative authoring
state. Managers and authors alike may find it useful for monitoring the workspace and for
identifying items, such as files not committed, user status (e.g., who is working on a file or who has
completed a file), and what needs to be done.

You can customize the columns that display in the overview and perform certain tasks like
changing the file status, launching the Content Editor from a file listed, or committing a file. You can
also commit many files at once in bulk, to the Git repository.

How to Open the Workspace Overview
1. On the left side of the Flare Online interface, click Projects.

2. Select a project to open it.

3. Click the Workspace tab at the top of the screen.

4. (Optional) From the drop-down at the top of the interface, you can select a branch for the
edits.

5. Click . The Workspace Overview opens to display various items (e.g., status, authors, type)
about edited files in a project. (If files are already in a working state, the Open Workspace
Overview button shows with a circle in the upper-right corner.)

If there are files uncommitted, you will see a snapshot of the total files not committed (i.e.,
files that are either In Progress, or files Ready to Commit).

If all files are committed (i.e., no files are being edited), the overview grid is empty.

CHAPTER 3  38



CHAPTER 3  39



How to Commit Multiple Files at Once
1. In the Workspace Overview, click the check box column header. This selects all the files in the

list (for a bulk commit). You can also deselect a few of the files if you want to commit most of
files, but not all of them.

2. Click Commit in the upper-right corner.

3. In the Create New Commit dialog, enter a Commit Message and click Commit. Alternatively,
you can click Cancel.

CHAPTER 3  40



EXAMPLE Before you do a bulk commit, use the Workspace Overview to determine if
committing the files selected is a good idea. In most cases, authors and files status
should indicate "Ready to Commit" for all files. Otherwise, you are going to commit
changes that someone else might not want committed yet.

The following Workspace Overview shows an example of files and authors still at
work.

CHAPTER 3  41



It is probably not a good idea to commit these items yet. If you do, a warning displays
in the Commit dialog.

CHAPTER 3  42



This is a better example. The files and authors are all set for a commit.

CHAPTER 3  43



No warning displays in the Commit dialog. And all your co-workers are probably
happy that their changes made it into the files without a problem and headache.

CHAPTER 3  44



What’s Noteworthy?
NOTE What is the repository versus the workspace? Flare Online stores files virtually in a
Git-based system. If you open and view a file, it is in a committed state in the project’s
repository. If you click to edit a file, it then enters a “workspace mode,” essentially making a
working copy of the file from the repository. In this mode, the file is in a non-committed
state with pending changes. When editing is completed, the file needs to be committed
back to the project’s repository.

NOTE What if I don't want others involved in certain files? If you plan to make changes in
files, but would prefer that other authors do not make changes in those same files, there is
currently no way to lock files in collaborative authoring. The best solution is to create
another branch in Flare Desktopand work in that branch by yourself. You might need to ask
other authors not to work in that same branch. Then later, when you are finished with all
changes, you can merge that branch into another using Flare Desktop.

NOTE Certain types of files (e.g., readme, text, css) are single-commit items and exist in
the repository only. Conversely, HTM files such as topics, snippets, and templates are
supported by collaborative authoring. You can open multiple files in the workspace, retain
all changes, and then commit them in bulk.

CHAPTER 3  45



APPENDIX

PDFs
The following PDFs are available for download from the Help system.

AI Assist Guide

Analytics Guide

Authoring Guide

Branding Guide

Building Output Guide

Checklists Guide

Conditions Guide

Getting Started Guide

Images and Multimedia
Guide

License Management and
Purchasing Guide

Links Guide

Projects Guide

Reports Guide

Reviews Guide

Security Whitepaper

Sites Guide

Snippets Guide

Source Control Guide

Targets Guide

Tasks Guide

Topics Guide

Translation Guide

Users and Teams Guide

Variables Guide

What's New Guide

Widgets Guide

APPENDIX  46


	CHAPTER 1
	Introduction

	CHAPTER 2
	Flare Online
	Why?
	What is Different?
	Flare Online vs. Flare Desktop


	CHAPTER 3
	Collaborative Authoring
	Permission Required?
	What are the Changes to the Editing Workspace?
	Visible Changes From Others
	Do I Have to Worry About Conflicts?
	Multiple Authors — How to Edit an Existing File
	Committing Edits
	Selecting Ready to Commit
	Using Version History
	Workspace Overview
	What’s Noteworthy?


	APPENDIX
	PDFs


