
USER GUIDE  

MADCAP FLARE 2024 r2

Source Control: Git



Copyright © 2024 MadCap Software. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the
purchaser's personal use without the written permission of MadCap Software.

MadCap Software
1660 17th Street, Suite 201
Denver, Colorado 80202
858-320-0387
www.madcapsoftware.com

THIS PDF WAS CREATED USING MADCAP FLARE.



CONTENTS

CHAPTER 1

Introduction 6

CHAPTER 2

General Information for Git 7
Common Source Control Terms 8
Source Control Icons 9
Bind Detection, Disabling Providers, and Unbinding
Providers—Git 10

CHAPTER 3

Process for Git 13
Binding a Project to Git 14
Importing From Source Control 24
Pulling Files From a Remote Repository 27
Committing Source Control Files 30
Synchronizing Source Control Files 31
Pushing Files to a Remote Repository 35
Merging Source Control Files 39

CHAPTER 4

Branch Activities for Git 48

CONTENTS iii



Creating Branches 49
Publishing Branches 52
Switching Branches 57
Getting Remote Branches 63
Merging Branches 65
Reverting Branches 76
Deleting Branches 79

CHAPTER 5

Other Activities for Git 84
Adding and Editing an Ignore File 86
.gitignore 86
Adding Files to Source Control 90
Deleting Source Control Files 92
Disabling the Get Latest Prompt for Source Control 93
Disabling a Git Provider 94
Enabling Source Control Status Checks 98
Modifying Network Settings 99
Publishing to Source Control 102
Reverting Modified Source Control Files 103
Rolling Back to an Earlier Version of a File 104
Setting Color Options for Project File Differences 110
Unbinding a Git Provider From a Project 112
Using Git for Windows 116
Viewing Differences in Source Control Files 119
Viewing the History of Source Control Files 122
Viewing Modified Files 124

APPENDIX

PDFs 126

CONTENTS iv



Tutorials 126
Cheat Sheets 127
User Guides 128

CONTENTS v



CHAPTER 1

Introduction
Git is a source control system that uses distributed development, as opposed to a centralized
workflow used by other systems. This means that each writer has a local Git repository, as well as
being bound to a remote repository (created via GitHub, Bitbucket, etc.), which other authors may
also be connected to. As each author works, changes are made and committed in the local
repository, which can then be synchronized with the remote repository. You can use the Flare
interface to perform various source control tasks for a project that is bound to Git. Alternatively, you
can use a third-party solution to perform tasks.

General Information

n "Common Source Control Terms" on page 8

n "Source Control Icons" on page 9

n "Bind Detection, Disabling Providers, and Unbinding Providers—Git" on page 10

Process

1. Install and Set Up Git Remote Repository (done outside of Flare)

2. "Binding a Project to Git" on page 14

3. (Other Team Members) "Importing From Source Control" on page 24

4. "Pulling Files From a Remote Repository" on page 27

5. "Committing Source Control Files" on page 30

6. "Synchronizing Source Control Files" on page 31 or "Pushing Files to a Remote Repository" on
page 35

7. "Merging Source Control Files" on page 39

CHAPTER 1  6



CHAPTER 2

General Information for Git
There are various pieces of general information you should know if you plan to use this feature.

This chapter discusses the following:

Common Source Control Terms 8

Source Control Icons 9

Bind Detection, Disabling Providers, and Unbinding Providers—Git 10

CHAPTER 2  7



Common Source Control Terms
Following are definitions for some of the common phrases used in Flare's integrated source control
with Git.

n Bind This means to connect your project to Git. After doing this, you can then take advantage
of all the automated source control tasks (such as commit, revert, pull, push, and so on).

n Commit This means to record changes to your Flare files to the local Git repository.

n Revert This means to undo changes you have made to a Flare branch or file. Changes are
reverted to the way they were at the last commit.

n Synchronize This pulls the files from the remote Git repository and merges them with your
local database, then pushes your local changes back to the remote Git repository.

n Pull This retrieves commits from the remote Git repository and merges them with the files in
your local database.

n Push This sends commits from your local database to the remote Git repository.

n Branch This creates a new path for commits. This lets you create new versions of a file while
keeping the original file unchanged (e.g., for documenting a new feature, testing page layouts,
or rewriting existing information). You can create as many branches as you want.

NOTE Flare integrates with multiple source control providers to provide built-in source
control support. Each of the source control providers built-in to Flare uses different terms.
As such, Flare's source control interface is different depending on which source control
provider you use. Please refer to the sections for each source control provider if you need
to see information about the terms used by other built-in systems.

CHAPTER 2  8



Source Control Icons
Following are descriptions for the primary icons that you may see next to files when using Git.

Icon Description

Modified

This indicates that the file has been modified. You can commit the file to your local
Git repository when you are ready.

New File (Pending Add)

This indicates that you have a file in your project but have not yet added it to Git. This
might occur, for example, if you create a new topic and do not add the file to source
control during the topic creation process. To resolve this, simply right-click on the file
and select Source Control > Add.

CHAPTER 2  9



Bind Detection, Disabling Providers,
and Unbinding Providers—Git

Flare has options for bind detection, disabling providers, and unbinding providers. Although these
are separate features, they are all somewhat related. This information is especially important if you
are using an external tool to bind and manage your source control tasks.

Bind Detection
Flare's bind detection settings are found on the Source Control tab of the Options dialog.

CHAPTER 2  10



Bind detection scans your project when you load it to see if the project has been previously bound
to source control. If a binding is detected, you then have the option of applying the binding and
committing the project to source control. Depending on the provider you are using, Flare may
search the file system and its artifacts, as well as contact and query servers, to find potential
source control bindings.

When you open a Flare project that hasn't been bound to source control before, the bind detection
option is disabled for Perforce Helix Core, Subversion, and Team Foundation Server. It is enabled by
default for Git and MadCap Central (which uses Git). If you bind a project to source control using
the Flare interface, the option is then automatically enabled.

NOTE If you bind a project to Git or MadCap Central, which uses Git) using the Flare
interface, the detection will automatically happen behind the scenes. If you use a tool
outside of Flare for the Git binding, you may or may not want to enable bind detection. For
example, you might create a folder where you store all of your Flare projects, and you use
an external tool to create the bindings, with a .Git folder stored at the root level of that main
folder. In that case, you would want the bind detection option on this tab disabled for Git.

NOTE You can use bind detection as an alternative to importing a Flare project. If you have
received a Flare project file (e.g., by copying it from a server, by opening it from a network
location), you can simply open the file and Flare will search for and apply existing source
control bindings.

NOTE Source control providers are scanned in the following order:

1. Git

2. Subversion

3. Perforce Helix Core

TIP Detecting source control bindings may take a considerable amount of time. It is
recommended that you select only the source control providers that you use to speed up
the detection process.

CHAPTER 2  11



Disabling Providers
By default, when a project is bound to source control, the provider (Git, Perforce Helix Core,
Subversion, or Team Foundation Server) is enabled. This means that the source control interface
elements in Flare are visible, and you can use them to perform various tasks (e.g., commits,
synchronize changes).

Disabling a provider means that the source control interface elements are no longer shown. This
does not mean you cannot use source control. As long as the provider is still bound to the project,
you can perform source control tasks in a third-party tool outside of Flare.

For more details and steps, see "Disabling a Git Provider" on page 94.

Unbinding Providers
When you unbind a provider, it means you are removing the connection altogether between the
Flare project and the local repository.

You can unbind a provider via the Project Properties dialog or the Settings view in the Source
Control Explorer. Click the Unbind Provider button.

For more details and steps, see "Unbinding a Git Provider From a Project" on page 112.

CHAPTER 2  12



CHAPTER 3

Process for Git
Certain tasks must be completed in order when using this feature.

This chapter discusses the following:

Binding a Project to Git 14

Importing From Source Control 24

Pulling Files From a Remote Repository 27

Committing Source Control Files 30

Synchronizing Source Control Files 31

Pushing Files to a Remote Repository 35

Merging Source Control Files 39

CHAPTER 3  13



Binding a Project to Git
Use the following steps if you have already created a Flare project and want to bind ("connect") it to
Git. You can also automatically detect existing source control bindings if your project has been
previously connected to Git.

When using Git for source control, every Flare project will have a local repository. So after you bind
a Flare project to Git, you will see a folder named ".git" alongside your other project folders in
Windows Explorer. You will see a .gitignore file, which prevents unnecessary folders and files (e.g.,
Analyzer, Output, Project > Users) from being included in the source control processes.

As you work in your project, changes can be committed to your local repository. Then, you would
periodically synchronize (i.e., pull, push) files with your remote repository. This allows other people
on your team to get your changes, and it lets you get their changes as well.

CHAPTER 3  14



NOTE The following steps show how to bind a project using the Flare interface. It is also
possible to bind a project outside of Flare (e.g., sing Git Bash). If you decide to do this, you
should be aware of some additional aspects of source control, such as bind detection and
disabling providers.

NOTE Each project bound to Git must have its own source control repository. Also, when
first binding a project to Git, the repository must be empty. For example, if you are using a
third-party solution such as GitHub to create a remote repository, you might initially be
presented with options (such as README or .gitignore) that add files to your new
repository. If you select any of these options and then attempt to bind the project to Git, you
will experience an error that looks something like this: "Destination already in use by
another project. Please push to an empty remote."

Therefore, you should avoid selecting any such options when creating your remote
repository. After you bind the project to the remote Git repository, you can then return to
that repository and add the README or other files as necessary.

CHAPTER 3  15



How to Bind a Project Using the Project
Properties Dialog

1. Select Project > Project Properties. The Project Properties dialog opens.

2. Select the Source Control tab.

3. Click Bind Project. The Bind Project dialog opens.

4. From the drop-down, select Git.

CHAPTER 3  16



5. If you are going to bind to a remote repository, select Remote Repository, then enter the
address of the repository in the field. If you want to work locally, you can leave this box
unselected. You can enter an HTTP URL or an SSH URL.

NOTE You may need to obtain this information from your system administrator.

6. If you want to push to the remote repository when you bind the project, select the Push on
bind check box. This will push the initial project files to the repository when you bind the
project.

7. In the Name field, enter your name.

8. In the Email field, enter your email address.

9. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with other
tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

10. (Optional) In the Comment field, you can enter any internal comments.

11. In the Bind Project dialog, click OK.

12. In the Project Properties dialog, click OK.

CHAPTER 3  17



13. (Optional) If you entered an HTTP address, enter your user name and password in the Log In
dialog. Click OK when you are finished.

14. (Optional) If you entered an SSH URL, the Certificate Specification dialog opens. In the dialog,
do the following and click OK when you are finished:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Flare to remember your key information so you do not need to enter it again
later, select the check box next to Save certificate information.

NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab). Follow
the directions provided by your source control provider to add these keys to
your Git account. Once you generate these keys, they are typically found in the
C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

CHAPTER 3  18



EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

CHAPTER 3  19



How to Bind a Project Using the Explorer
1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Settings. The Settings pane opens.

3. Click Bind. The Bind Project dialog opens.

4. From the drop-down, select Git.

5. If you are going to bind to a remote repository, select Remote Repository, then enter the
address of the repository in the field. If you want to work locally, you can leave this box
unselected. You can enter an HTTP URL or an SSH URL.

NOTE You may need to obtain this information from your system administrator.

6. If you want to push to the remote repository when you bind the project, select the Push on
bind check box. This will push the initial project files to the repository when you bind the
project.

7. In the Name field, enter your name.

CHAPTER 3  20



8. In the Email field, enter your email address.

9. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with other
tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

10. (Optional) In the Comment field, you can enter any internal comments.

11. In the Bind Project dialog, click OK.

12. In the Project Properties dialog, click OK.

13. (Optional) If you entered an HTTP address, enter your user name and password in the Log In
dialog. Click OK when you are finished.

14. (Optional) If you entered an SSH URL, the Certificate Specification dialog opens. In the dialog,
do the following and click OK when you are finished:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Flare to remember your key information so you do not need to enter it again
later, select the check box next to Save certificate information.

CHAPTER 3  21



NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab). Follow
the directions provided by your source control provider to add these keys to
your Git account. Once you generate these keys, they are typically found in the
C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

CHAPTER 3  22



What’s Noteworthy?
TIP If you are having difficulty binding your project, try binding to a brand new directory in
your source control provider. You should also ensure that the directory on your local
machine (and its parent directories) is not already mapped to source control, as this may
cause issues with binding.

NOTE You can also bind a new Flare project to source control while creating it.

NOTE When you bind a project to Flare using Git, a .gitignore text file is created in your
local project folder. Advanced users can edit the .gitignore file with a text editor to control
which files or folders can be pushed to your Git repository. You can also specify which files
and folders are ignored by Git, and are not pushed to the repository.

NOTE If you want to publish your output to source control, you must create a bind
destination.

CHAPTER 3  23



Importing From Source Control
This chapter focuses on importing a Flare project from source control. If you are working on a
multi-author project and another member of the team has already bound the Flare project to Git,
other members of the team can then import the project from source control; doing this
automatically sets up those writers with the correct binding.

How to Import a Project From Git
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select File > New Project > Import Project.

n Source Control Explorer From the View ribbon, open the Source Control Explorer. From
the drop-down, select the Home pane. Click Import Project.

The Import Project from Source Control Wizard dialog opens.

2. From the drop-down, select Git.

3. In the Remote drop-down, enter the remote repository where the project is located.

NOTE You may need to obtain this information from your system administrator.

4. In the Name field, enter your name.

5. In the Email field, enter your email address.

6. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with other
tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

7. Click Next.

8. Next to the Project file field, click Browse. The Browse Source Control Files dialog opens.
(You may need to log in with your user name and password.)

CHAPTER 3  24



9. (Optional) If the remote you selected in Step 3 requires an SSH certificate, the Certificate
Specification dialog opens. In the dialog, do the following:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Flare to remember your key information so you do not need to enter it again
later, select the check box next to Save certificate information.

NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab). Follow
the directions provided by your source control provider to add these keys to
your Git account. Once you generate these keys, they are typically found in the
C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

CHAPTER 3  25



SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

10. Find and click the Flare project file (FLPRJ) that you want to import. (You may need to log in
with your user name and password.)

11. Click OK.

12. Click Next..

13. In the Project name field, the name of the project being imported is displayed. It is
recommended that you leave the name as it is, especially if you are working with other
authors on the project. However, you can enter a different project name if you want.

14. In the Project folder field, either accept the default location for the new project or click to
browse for and select a folder.

15. Click Finish. The project is imported and loaded into Flare.

NOTE If you want to import a project from source control, you can alternatively open the
project file from another location (e.g., a server location), and then use Flare's bind
detection functionality to automatically apply available source control bindings to the
project.

CHAPTER 3  26



Pulling Files From a Remote
Repository

If you need to update the files in your local database, you can do a pull. When you pull files, Flare
retrieves files from the remote repository and downloads them to your local Git database. This
updates your current branch with the most current version of the file. This is a good way to get
changes that other users have made to a file and pushed to the remote.

When you pull, you will see the Resolve Version Conflict dialog if conflicts exist between the remote
files and the files in your local database.

How to Pull Files From a Remote Repository
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Pull.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Pull.

2. (Optional) If you did not commit your files before starting the pull, a dialog asks if you want to
commit your files. Click Yes to continue. See "Committing Source Control Files" on page 30.

NOTE You must commit all modified files to proceed with the pull.

3. The Select Remote for Pull dialog opens. From the Remote drop-down, select the repository
you want to pull from.

4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

CHAPTER 3  27



TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

CHAPTER 3  28



d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Pull dialog, click OK. If the Log In dialog opens, complete the User
name and Password fields and click OK.

6. If the remote and local files are the same, a message tells you so. Click OK.

If a remote file is different from the version in your local database, the Resolve Conflicts
dialog opens. If you want to accept all of the differences between the remote and local files,
thus merging them, click Auto Merge All. If you want to review the differences in the files side
by side and resolve each conflict, click Resolve. For more information about merging files and
resolving conflicts, see "Merging Source Control Files" on page 39.

CHAPTER 3  29



Committing Source Control Files
When you are finished editing files, you can commit them to source control. Committing a file adds
your changes to the local Git database. t is a good idea to periodically commit files so that they are
organized in logical chunks with a comment that accurately summarizes the changes. When you
are ready to add your local commits to the remote repository, you can push these files to the
remote. Committing and pushing changes frequently can help to avoid conflicting changes from
other users, although conflicts are bound to occur from time to time.

How to Commit Files to Source Control
1. Do one of the following, depending on the part of the user interface you are using:

n Status Bar In the lower-right of Flare, click (a number indicates how many files have
changes that need to be committed).

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Pending Changes Window Pane From the Source Control ribbon, open the Pending
Changes window pane. Select the files in the window pane that you want to commit,
and in the local toolbar click .

n Ribbon Select Source Control > Commit (for selected files) or Source Control > Commit
All (for all files in the project).

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click the file you want to commit and select Source
Control > Commit for selected files) or Source Control > Project > Commit All for all
files in the project).

2. Enter a comment tied to the commit. This enables you to keep an audit trail for a file. The
comment can then be viewed from the History dialog, which can be accessed from the
Source Control Explorer, the Source Control ribbon, the File menu, or the Source Control
button .

3. Click Commit.

CHAPTER 3  30



How to Commit Files to Source Control Using
the Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Pending Changes.

The Pending Changes pane opens. Files that will be committed are listed under Included
Changes, and files that will not be committed are listed under Excluded Changes. You can
identify edited files because [modified] is displayed next to the file name.

3. In the Comment field, enter a comment tied to the commit. This enables you to keep an audit
trail for a file. The comment can then be viewed from the History dialog, which can be
accessed from the Source Control Explorer, the Source Control ribbon, the File menu, or the
Source Control button .

4. (Optional) If you want to select the files or folders that you include in the commit, right-click a
file or folder and select one of the following options from the context menu.

n Exclude Excludes the selected file from the commit

n Exclude Unselected Excludes all unselected files from the commit

n Include Includes the selected file in the commit

n Include Unselected Includes all unselected files in the commit

5. Click Commit Included to commit all of the files in the Included Changes ist.

Synchronizing Source Control Files
Synchronizing files performs a pull to update the local database with files from the remote
repository, and then pushes any local commits to the remote repository. Changes made during a
synchronize affect your current branch. You will see the Resolve Version Conflict dialog if conflicts
exist when you synchronize your files.

If a remote file is different from the version in your local database, the Resolve Conflicts dialog
opens. If you want to accept all of the differences between the remote and local files, thus merging
them, click Auto Merge All. If you want to review the differences in the files side by side and resolve
each conflict, click Resolve

CHAPTER 3  31



How to Synchronize Files
1. Do one of the following, depending on the part of the user interface you are using:Select

Source Control > Synchronize.

n Status Bar In the lower-right of Flare, click . A number next to the up arrow
indicates how many commits need to be pushed. If you see a number next to the down
arrow on this button, it indicates that there are pending remote commits that you still
need to pull to your local repository. A number displays next to the down arrow only
after you do a fetch (i.e., "git fetch"). This is a command that you cannot perform from
the Flare interface, but you can do it using another tool such as Git Bash. Another way
for a number to display next to the down arrow is if you first do a pull on one branch,
then switch to another branch that has pending remote commits.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

NOTE After committing changes, you might need to click somewhere in the
interface before numbers populate next to this button.

n Ribbon Select Source Control > Synchronize.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Synchronize.

2. (Optional) If you did not commit your files before starting the synchronize, a dialog asks if you
want to commit your files. Click Yes to continue. See "Committing Source Control Files" on
page 30.

NOTE You must commit all modified files to proceed with the synchronization.

3. The Select Remote for Synchronize dialog opens. From the Remote drop-down, select the
repository you want to synchronize with.

CHAPTER 3  32



4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

CHAPTER 3  33



d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Synchronize dialog, click OK. If the Log In dialog opens, complete the
User name and Password fields and click OK.

6. If a remote file is different from the version in your local database, the Resolve Conflicts
dialog opens. If you want to accept all of the differences between the remote and local files,
thus merging them, click Auto Merge All. If you want to review the differences in the files side
by side and resolve each conflict, click ResolveFor more information about merging files and
resolving conflicts, see "Merging Source Control Files" on page 39.

CHAPTER 3  34



Pushing Files to a Remote Repository
After you commit the changes from your roject to the local Git repository, you can push them to the
remote Git repository. Performing a push sends all of the files you have committed on your current
branch to the remote repository. This is a way to back them up to source control and for other
users to have access the changes you have made.

Pushing Files to MadCap Central
If you are not using MadCap Central, you can simply use the standard method (described below) for
pushing files to a repository. If you have a dual-bound setup (i.e., with a first binding to a third-party
solution and a second to Central), you can use the MadCap Central window pane to push your files
(for more information, see the online Help).

CHAPTER 3  35



How to Push Files to a Remote Repository
1. Do one of the following, depending on the part of the user interface you are using:

n Status Bar In the lower-right of Flare, click (a number next to the up arrow
indicates how many commits need to be pushed).

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Push.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click on any file and select Source Control >
Project > Push.

2. (Optional) If you did not commit your files before starting the push, a dialog asks if you want
to commit your files. Click Yes to continue. See "Committing Source Control Files" on page
30.

NOTE You must commit all modified files to proceed with the push.

3. The Select Remote for Push dialog opens. From the Remote drop-down, select the repository
you want to push to.

4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

CHAPTER 3  36



TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

CHAPTER 3  37



d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Push dialog, click OK. If the Log In dialog opens, complete the User
name and Password fields and click OK.

6. If the local changes are different from those in the remote, you will see an error in the
Progress dialog during the push. Perform a pull, then attempt the push again. See "Pulling
Files From a Remote Repository" on page 27.

CHAPTER 3  38



Merging Source Control Files
There may be times when you need to merge changes from different authors when synchronizing
or pulling files. The merge occurs automatically if there are no conflicting changes (i.e., changes do
not occur in the same location in the file). If there are conflicting changes, a dialog opens, allowing
you to determine how changes are merged.

How to Merge Source Control Files
1. Synchronize your files with the remote repository (see "Synchronizing Source Control Files"

on page 31) or do a push (see "Pushing Files to a Remote Repository" on page 35). f your
local copy of the file is different from the remote copy (e.g., another author has already
pushed the same file to the remote), the Resolve Conflicts dialog opens. .

2. Click Auto Merge All. If changes from the other author do not conflict with your changes, this
will merge all changes. A message lets you know that a backup of your local copy has been
made. This lets you restore that file if you do not want to keep the merged version. You do not
need to complete the rest of the steps below.

However, if your changes conflict with those from another author, a message displays to tell
you. In this case, continue with the next step.

3. Click OK on the conflict message.

4. In the Resolve Conflicts dialog click Resolve. The Resolve Version Conflict dialog opens.
From this dialog, you can choose from various options.

n Merge changes for me Automatically merges changes within the same file that are not
part of the same element. If changes have been made to the same element (e.g., the
same <p> tag or <h1> tag), Flare will display a prompt to merge the changes using the
merge tool.

n Merge changes in merge tool Opens a merging interface, which lets you see exactly
what changes were made and choose which to keep.

n Undo my local changes Automatically removes your changes and keeps changes from
other authors.

n Discard external changes Automatically removes changes from other authors and
keeps your changes.

CHAPTER 3  39



5. If you selected the option to use the merge tool, the Merge Changes dialog opens. Use this
dialog to view and select changes. You can take actions in various ways.

n Click a Change You can click a change on either the remote or local side. This lets you
select a particular change. Use the key at the top of the merge changes dialog, as well
as the color coding on the local and server sides, to determine if a change has been
added (new), deleted, changed, or moved.

When you select a change, the change you selected will display with a solid colored
background, and the conflicting change will display with a striped background. If you
elect the other change, the background shading will switch.

n Type Content If you want to use your changes as well as those from another author,
and even tweak the paragraph a bit more, you can click in the area at the bottom of the
dialog and simply type content.

n Previous/Next Conflict When you are finished resolving the first conflict, you can use
the "Previous Conflict" and "Next Conflict" buttons at the bottom of the dialog to work
on other conflicts in the file.

NOTE If you selected "Merge as Text" in the local toolbar and are working in the code,
you can click on text with a hatched background to keep the change in it. After you
click on text with a hatched background, the hatched lines are removed, leaving a
solid color.

6. After all conflicts have been resolved, a message lets you know that a backup of your local
copy has been made. This lets you restore that file if you do not want to keep the merged
version. Click OK.

CHAPTER 3  40



EXAMPLE — No Conflicting Changes

Two authors—Bob and Jill—are working on the same project, using source control to
manage the files.

Bob starts making changes to his local version of the "FAQs" topic.

Jill also starts making changes to her local version of the "FAQs" topic. Jill's changes are in
a different location in the topic than Bob's changes; there are no conflicts. She finishes
before Bob and synchronizes her files.

Bob finishes his changes and tries to synchronize his files. During the pull, Bob is prompted
with a dialog, indicating that changes from another author have already been made.

Bob selects Auto Merge All. The changes from Bob and Jill are now both shown in the
merged topic. When either author ulls the topic again or synchronizes their files, they will
see the new version of the topic.

CHAPTER 3  41



EXAMPLE — Conflicting Changes

Two authors—Bob and Jill—are working on the same project, using source control to
manage the files.

Bob tarts making changes to his local version of the "FAQs" topic.

Jill also starts making changes to her local version of the "FAQs" topic. Jill's changes are in
the same paragraph in the topic as Bob's changes; thus, there is a conflict. She finishes
before Bob and synchronizes her files.

Bob finishes his changes and tries to synchronize his files. During the pull, Bob is prompted
with a dialog, indicating that changes from another author have already been made.

CHAPTER 3  42



Bob selects Auto Merge All. However, he receives another message, stating that his
changes conflict with those of Jill.

Bob clicks OK. Then in the Resolve Conflicts dialog he clicks Resolve. This opens the
Resolve Version Conflict dialog. From this dialog, Bob can choose from a few different
options.

CHAPTER 3  43



Bob selects Merge changes in merge tool. The Merge Changes dialog opens.

CHAPTER 3  44



So what action can Bob take at this point for merging the file changes?

Bob can right-click on the icon next to the change on either the local or remote side. This
displays a context menu, which lets Bob either keep or ignore a particular change.

CHAPTER 3  45



Another way of accomplishing the same thing is to left-click on an icon. When you do this,
the change from one side is kept and the change from the other side is ignored. If you left-
click the icon again, the results are toggled; the first change is ignored and the other is kept.

What if Bob wants to use his changes as well as Jill's, and possibly tweak the paragraph a
bit more? He can click in the area at the bottom of the dialog and simply type content.

CHAPTER 3  46



When he is finished resolving the first conflict, Bob can use the "Previous Conflict" and
"Next Conflict" buttons at the bottom of the dialog to work on other conflicts in the file.

After all conflicts have been resolved, Bob clicks OK. The merged topic is now pushed to
source control. When either author pulls the topic again or synchronizes their files, they will
see the new version of the topic.

CHAPTER 3  47



CHAPTER 4

Branch Activities for Git
A Git branch is a pointer to a snapshot of your changes, or you can think of it as a variation from the
original or main state of your files. Adding a branch lets you create a new development area for your
work (e.g., when documenting a new feature, rewriting large sections of a topic, or making
structural changes). Then later, you can merge the branch into another one.

This chapter discusses the following:

Creating Branches 49

Publishing Branches 52

Switching Branches 57

Getting Remote Branches 63

Merging Branches 65

Reverting Branches 76

Deleting Branches 79

CHAPTER 4  48



Creating Branches
When you are working in Git, you can create branches.

How to Create Branches—Branch Management
Dialog

1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Branch.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click on any file and select Source Control >
Project > Branch.

The Branch Management dialog opens.

2. Click Create. The Create Branch dialog opens.

3. From the Source Branch drop-down, select the existing branch you want to use to create the
new branch. Your new branch will copy the existing files from the source branch, but
commits you make on the new branch will not affect the source branch.

4. In the Branch Name field, enter a name for your branch. Names cannot include spaces.

NOTE Avoid creating new branches that share the same name as an existing branch
but with different casing. It is best to creating an entirely unique name for each
branch.

CHAPTER 4  49



5. (Optional) If you want to switch the branch when you create it, select the Switch to branch
check box.

WARNING You will not see a confirmation message when switching to a newly
created branch. Be sure all of your current changes are committed before creating
and switching to a new branch. If you have uncommitted changes, they will be lost.
See "Committing Source Control Files" on page 30.

6. Click Create. Your new branch is added to the "All branches" list. If you chose to switch to the
branch, you can now begin working on the branch.

CHAPTER 4  50



How to Create Branches—Source Control
Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches. The Branches view opens. In the
pane, you can see your current branch, as well as lists of your published and unpublished
branches.

3. Click Create Branch. The Create Branch dialog opens.

4. From the Source Branch drop-down, select the existing branch you want to use to create the
new branch. Your new branch will copy the existing files from the source branch, but
commits you make on the new branch will not affect the source branch.

5. In the Branch Name field, enter a name for your branch. Names cannot include spaces.

6. (Optional) If you want to switch the branch when you create it, select the Switch to branch
check box.

WARNING You will not see a confirmation message when switching to a newly
created branch. Be sure all of your current changes are committed before creating
and switching to a new branch. If you have uncommitted changes, they will be lost.
See "Committing Source Control Files" on page 30.

7. Click Create. Your new branch is added to the "All branches" list. If you chose to switch to the
branch, you can now begin working on the branch.

CHAPTER 4  51



Publishing Branches
If you want to push to, pull from, or synchronize using a branch you have created, you must publish
the branch. You can still commit to an unpublished branch, but until you publish, you will not be able
to send your commits to the remote repository. It is a good idea to publish branches unless you are
only using a branch locally for a short period of time.

You can publish branches in the following ways:

n Automatic If your current branch is unpublished, pushing, pulling, or synchronizing
automatically publishes the branch. See "Pushing Files to a Remote Repository" on page 35,
"Pulling Files From a Remote Repository" on page 27, and "Synchronizing Source Control
Files" on page 31.

n Manual Select an unpublished branch in the Source Control Explorer nd manually publish it.
You can select any branch, even if it is not your current branch.

CHAPTER 4  52



How to Manually Publish Branches
1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches.

The Branches pane opens. In the pane, you can see your current branch, as well as lists of
your published and unpublished branches.

3. Select the unpublished branch you want to publish.

4. Click Publish Branch.

5. (Optional) If you did not commit your files before publishing the branch, a dialog asks if you
want to commit your files. Click Yes to continue. See "Committing Source Control Files" on
page 30.

NOTE You must commit all modified files before you can publish the branch.

CHAPTER 4  53



6. The Select Remote for Publish dialog opens. From the Remote drop-down, select the
repository you want to push to.

NOTE If you have pending changes that you are committing while publishing your
branch, you will see the Select Remote for Push dialog. However, the steps for
pushing while publishing a branch are the same. See "Pushing Files to a Remote
Repository" on page 35 for additional information.

7. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

CHAPTER 4  54



TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

d. Click OK.

CHAPTER 4  55



TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

8. In the Select Remote for Publish dialog, click OK. If the Log In dialog opens, complete the
User name and Password fields and click OK. Your branch is published and added to the
Published Branches list.

CHAPTER 4  56



Switching Branches
If you have created more than one branch, you can switch to, or select, the branch you want to work
with. When you switch to a new branch, you will see the files associated with that branch, and any
new commits will be associated with the selected branch. There are multiple ways to switch
branches. One of the benefits of using the Branch Management dialog is that you can switch to
either local or remote branches.

WARNING You should commit all of your current changes before switching branches. If
you have uncommitted changes when you switch branches, they will be lost.

CHAPTER 4  57



How to Switch Branches—Status Bar
1. Make sure the status bar is enabled (View > Status Bar).

2. In the lower-right of the interface, click the branch drop-down, which displays the branch that
is currently active. Then, select the branch you want to switch to. If you do not have any
pending changes, your branch switches.

CHAPTER 4  58



How to Switch Branches—Submenu
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Branch.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Switch Branch.

2. From the submenu, select the branch you want to use. f you do not have any pending
changes, your branch switches.

NOTE Your current branch is marked in the submenu.

CHAPTER 4  59



How to Switch Branches—Branch Management
Dialog

1. (Optional) With any branch selected as the active one, do a pull. This makes all remote
branches available for selection in the Flare interface, even if you haven't yet added a remote
branch locally.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Flare, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Branch.

3. Select the Locals or Remotes tab, depending on which kind of branch you want to select.
Switching to a remote branch will add it to the Locals tab, and make that branch the active
one in the Flare interface.

4. Select the branch you want to get (i.e., check out), and click Switch.

5. Close the Branch Management dialog.

CHAPTER 4  60



How to Switch Branches—Source Control
Explorer
You can also switch branches using the Source Control Explorer. You can view a list of published
and unpublished branches in the Source Control Explorer, so this method is preferable if you want
to pick a branch by its publication status.

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches.

The Branches pane opens. In the pane, you can see your current branch, as well as lists of
your published and unpublished branches.

3. Select the branch you want to switch to.

4. Click Switch Branch. f you do not have any pending changes, your branch switches.

CHAPTER 4  61



Switching With Pending Changes
If there are pending changes on your current branch, a dialog asks if you want to switch branches
and discard your modifications. This is because the changes were made on the current branch, and
do not carry over when you switch branches.

n Click Yes to switch branches. Your changes will be lost.

n Click No to cancel the switch. Commit your changes before attempting the switch again. See
"Committing Source Control Files" on page 30.

CHAPTER 4  62



Getting Remote Branches
If there is a branch on your remote repository, you might want to add it locally so you can work in it.
This can be done from the Branch Management dialog, which lets you see both local and remote
Git branches.

CHAPTER 4  63



How to Get a Remote Branch
1. With any branch selected as the active one, do a pull. This makes all remote branches

available for selection in the Flare interface, even if you haven't yet added a remote branch
locally.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Flare, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Branch.

3. Select the Remotes tab.

4. Select the branch you want to get (i.e., check out) from the remote repository, and click
Switch. This adds the branch to the Locals tab, and it also makes that new local branch the
active one in the Flare interface.

5. Close the Branch Management dialog.

CHAPTER 4  64



Merging Branches
There are times where you may have to merge branches into a common branch.

How to Merge Branches in Git
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Merge.

n Right-Click If you have the Content Explorer or Project Organizer window pane open,
right-click on any file or folder and select Source Control > Project > Merge.

n Source Control Explorer From the drop-down, select Branches. Then select any branch
except the active one, and click the Merge Branch button.

The Select branch to merge dialog opens.

2. From the drop-down list, select the Git branch you wish to merge into the active branch.

CHAPTER 4  65



3. Click OK. A dialog will display the status of the merge in progress.

4. When the merge operation is completed, a dialog will display indicating the merge was a
success. Click OK to close the dialog.

EXAMPLE — No Conflicting Changes

You have two feature branches that are bound in Git source control.

In the first feature branch (e.g., develop-feature1), you are making changes to the "Getting
Started" topic. These changes are specific to the first feature being developed.

In the second feature branch (e.g., develop-feature2), you also make changes to the
"Getting Started" topic. These changes are specific to the second feature being developed,
and are being made in a separate part of the topic from the develop-feature1 changes.

After you complete your changes on the second feature branch, you decide you want to
merge your changes from the first feature branch to the second feature branch.

CHAPTER 4  66



In the Source Control Explorer, you select the develop-feature2 branch. Then, you click the
Merge Branch button. Finally, from the drop-down list of branches, you select the develop-
feature1 branch.

You click OK to merge. Since the changes took place in different sections of the "Getting
Started" topic, the merging of the first feature branch into the second feature branch is
successful.

CHAPTER 4  67



EXAMPLE — Conflicting Changes

You have two feature branches that are bound in Git source control.

In the first feature branch, you are making changes to the Getting Started" topic. These
changes are specific to the first feature being developed.

In the second feature branch, you also make changes to the "Getting Started" topic. The
changes are made to the same paragraph as those you made for the first feature branch.

In the Source Control Explorer, you select the develop-feature2 branch. Then, you click the
Merge Branch button. Finally, from the drop-down list of branches, you select the develop-
feature1 branch.

You click OK to merge. Since the changes took place in the same paragraph in the "Getting
Started" topic, you get a dialog indicating conflicts exist. You then click Yes to resolve the
existing conflicts.

CHAPTER 4  68



On the Resolve Conflicts dialog, you click Auto Merge All.

However, the auto merging is not successful. You click OK, then Resolve to fix the
remaining conflicts.

CHAPTER 4  69



When the Resolve Version Conflict dialog displays, you choose to Merge changes in merge
tool. This will allow you to view the specific conflict taking place rather than accepting
either the local or the server changes.

CHAPTER 4  70



The Merge Changes dialog opens. The left pane is the file version on your local machine,
while the right pane is the server version. The bottom pane displays how the file will display
as you make your changes.

CHAPTER 4  71



As you review the text, you notice the conflict icon next to the "Do This" bullet point. You
decide to keep the server version in the right pane by right-clicking on the conflict icon and
selecting Keep Change.

CHAPTER 4  72



Notice that when you keep the changes on the right pane, the conflicting changes in the left
pane are now disabled and outlined in gray.

NOTE As you resolve conflicts in the merge tool, you can also left-click on the
Conflict icon on either the local or server pane to keep the change. If you left-click
on the icon again, it will toggle the change to be accepted on the opposite pane of
where you are clicking.

CHAPTER 4  73



Once you have reviewed all of the conflicts and made your changes, you click OK. At this
point, you need to commit the changes that resolved your conflicts. You then type in your
comment used to resolve the conflict, and click Commit.

When your changes are committed, you can now merge this branch. With the develop-
feature2 branch selected, you click the Merge Branch button. You then select the develop-
feature1 branch from the drop-down list. You click OK to merge. A confirmation dialog
displays when the merge is completed.

CHAPTER 4  74



The merge will also be displayed in the Branch History dialog.

CHAPTER 4  75



Reverting Branches
A revert is a type of commit that undoes a prior commit on your branch. Reverting becomes
necessary if changes have been made that are no longer needed. For example, if you have
committed changes for a feature branch that is no longer going to be included in a release, those
changes need to be reverted.

In the Source Control ribbon, the Branch History button displays your history of commits on the
active Git branch. This dialog displays the history in descending order, with the most recent action
displayed on the top line.

An advantage of reverting a prior commit on your branch is that it will back out any unwanted
changes. If other writers are making changes on the same branch, any reverted commits will be
picked up by the other writers when they pull from that branch.

But one disadvantage of reverting commits in your branch is that it will remove part of your branch
history. The revert removes the part of your branch history that contained the commits that were
undone.

CHAPTER 4  76



How to Revert Commits in a Git Branch
1. In the Source Control Explorer, select your branch containing changes that you want to revert.

2. In the Source Control ribbon, click Branch History. The dialog that opens lets you view and
revert specific commits within your branch.

The following columns are displayed:

n Commit Type This indicates the type of changes checked in on the branch. You can
view when a branch was started, when a commit was made, or when a merge occurred.

n Branches This column displays the branches that are affected by the action taken. If
the changes affect more than one branch then all of the affected branches are
displayed in this column.

n Commit This alphanumerical code provides the commit number used by Git.

n Commit Time This displays the date, followed by the time the commit was made in
your Git branch.

CHAPTER 4  77



n Author This displays the name of the author that committed the specific change in the
branch.

n Comments This column displays the comments made for each commit.

3. Select the row that contains the commit you want to back out.

4. Click Revert.The Accept reverted modifications dialog is displayed.

5. Click Accept.

6. A confirmation message confirms the revert was successful. Click OK to close this dialog.

CHAPTER 4  78



Deleting Branches
If you no longer need a branch, you can delete it. This also deletes any commits on that branch. The
Branch Management dialog lets you delete either local or remote branches, or both.

You can delete any branch except the current branch. If you need to delete the current branch, you
will have to switch to a different branch first. See "Switching Branches" on page 57.

CHAPTER 4  79



How to Delete Branches—Branch Management
Dialog
The benefit of using the Branch Management dialog is that you can choose either local or remote
branches to remove.

1. Make sure the branch you want to delete is not the active branch.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Flare, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click any file and select Source Control > Project >
Branch.

3. Select the Locals or the Remotes tab, depending on which branch you want to delete. If you
want to delete a branch both locally and remotely, select either tab.

4. Select the branch you want to remove and click Delete.

CHAPTER 4  80



5. If you selected a local branch, you are asked if you also want to delete the remote branch (if
one exists). Click the check box if you do; otherwise, leave it disabled.

If you selected a remote branch, you are asked if you also want to delete the local branch if
one exists). Click the check box if you do; otherwise, leave it disabled.

6. Click OK.

7. Close the Branch Management dialog.

CHAPTER 4  81



How to Delete Branches—Source Control
Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches. The Branches view opens. In the
pane, you can see your current branch, as well as lists of your published and unpublished
branches.

3. Select the branch you want to delete. You can delete any branch except the current branch.

4. Click Delete Branch.

CHAPTER 4  82



5. A dialog asks if you want to proceed. By clicking the check box in the dialog, you can also
delete the remote branch (if one exists).

Click OK. The branch is removed from the list.

CHAPTER 4  83



CHAPTER 5

Other Activities for Git
In addition to the main activities, there are some other tasks you might perform regarding this
feature.

This chapter discusses the following:

Adding and Editing an Ignore File 86

.gitignore 86

Adding Files to Source Control 90

Deleting Source Control Files 92

Disabling the Get Latest Prompt for Source Control 93

Disabling a Git Provider 94

Enabling Source Control Status Checks 98

Modifying Network Settings 99

Publishing to Source Control 102

Reverting Modified Source Control Files 103

Rolling Back to an Earlier Version of a File 104

Setting Color Options for Project File Differences 110

Unbinding a Git Provider From a Project 112

Using Git for Windows 116

Viewing Differences in Source Control Files 119

Viewing the History of Source Control Files 122

CHAPTER 5  84



Viewing Modified Files 124

CHAPTER 5  85



Adding and Editing an Ignore File
The .git folder is the local repository for a Flare project and is included when your project is bound
to Git (e.g., via MadCap Central). The contents of this folder are updated automatically when you
perform source control tasks. The additional .gitignore file is necessary to make sure that certain
folders (e.g., Analyzer, FileSync, Output, Project/Users) are ignored when you push and pull files. In
most cases, you do not need to do anything with the .git folder or .gitignore file.

If you bind a project to Git outside of Flare (i.e., you do not use Flare's interface to do the binding),
you should make sure that you have a .gitignore file. You can add the .gitignore file by selecting an
option in the Source Control Explorer or Project Properties dialog. Once you have a project
containing a .gitignore file, the button in the interface changes to "Edit Ignore File," so that you can
open the file to make edits to it.

CHAPTER 5  86



How to Add an Ignore File
The following steps show how to do this in the Source Control Explorer. You can also accomplish
this in the Project Properties dialog (Project > Project Properties) on the Source Control tab.

1. Select View > Source Control Explorer.

2. Do one of the following:

n Click Settings. Then in the Ignore File section, Create Ignore File.

CHAPTER 5  87



n Click Pending Changes. Then next to the message at the top, click Add.

3. Make edits in the Text Editor and save your changes.

NOTE If you bind a project without using the Flare interface, and then bind to Central using
Flare's interface, a .gitignore file is automatically added for that project.

CHAPTER 5  88



How to Edit an Ignore File
The following steps show how to do this in the Source Control Explorer. You can also accomplish
this in the Project Properties dialog (Project > Project Properties) on the Source Control tab.

1. Select View > Source Control Explorer.

2. Click Settings.

3. In the Ignore File section, click Edit Ignore File.

4. Make edits in the Text Editor and save your changes.

CHAPTER 5  89



Adding Files to Source Control
When working in a roject that is connected to a source control application, there may be occasions
when you have local files that are not yet part of the source control repository. For example, when
you add a new topic, that file will not be included in the source control repository until you add it.

How to Add Files to Source Control
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Add.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click the file you want to add and select Source
Control > Add.

The Commit dialog opens. The selected files are listed with check boxes next to them.

2. Enter a comment tied to the commit. This enables you to keep an audit trail for a file. The
comment can then be viewed from the History dialog, which can be accessed from the
Source Control Explorer, the Source Control ribbon, the File menu, or the Source Control
button .

3. Click Commit.

CHAPTER 5  90



How to Add Files to Source Control Using the
Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Pending Changes.

The Pending Changes pane opens. Files that will be committed are listed under Included
Changes, and files that will not be committed are listed under Excluded Changes. You can
identify newly added files because [add] is displayed next to the file name.

3. In the Comment field, enter a comment tied to the commit. This enables you to keep an audit
trail for a file. The comment can then be viewed from the History dialog, which can be
accessed from the Source Control Explorer, the Source Control ribbon, the File menu, or the
Source Control button .

4. (Optional) If you want to select the files or folders that you include in the commit, right-click a
file or folder and select one of the following options from the context menu.

n Exclude Excludes the selected file from the commit

n Exclude Unselected Excludes all unselected files from the commit

n Include Includes the selected file in the commit

n Include Unselected Includes all unselected files in the commit

5. Click Commit Included to commit all of the files in the Included Changes ist. The Messages
pane opens and displays a list of files that were committed.

NOTE Adding files from other areas of the Flare interface (e.g., Pending Changes
window pane, Source Control ribbon) will only add new files. However, if you use the
Source Control Explorer to commit your files, it will commit all of your pending
changes: both new files and modified files. If you do not want to include all of your
files in the commit, you can right-click them and select Exclude. Files you exclude will
not be committed.

CHAPTER 5  91



Deleting Source Control Files
You can delete a topic or file that is bound to source control. This also removes the file from the
current Git branch.

How to Delete a File
1. In one of the window panes (e.g., Content Explorer, File List, Project Organizer, Pending

Changes window pane), select the relevant file(s).

2. On your keyboard press DELETE.

3. The Delete dialog opens. Select the bound files you want to delete.

4. Click Delete. The files are removed from your project and from the source control repository.
Files that are deleted from projects bound to Git cannot be undeleted.

CHAPTER 5  92



Disabling the Get Latest Prompt for
Source Control

By default, when you open a project that is bound to source control, a message automatically asks
if you want to get the latest version of files. However, you can disable this prompt in the Source
Control tab of the Options dialog (File > Options). Therefore, in the future when you open the project
you will no longer see the message, and the project will open without replacing any local files with
the latest ones from source control.

How to Disable the Get Latest Prompt for
Source Control

1. Select File > Options. The Options dialog opens.

2. Select the Source Control tab.

NOTE This tab will not be visible if your project is not yet bound to source control.
See "Binding a Project to Git" on page 14.

3. Click the check box Do not prompt to get latest when opening source control bound projects.

4. Click OK.

CHAPTER 5  93



Disabling a Git Provider
By default, when a project is bound to source control, the provider (Git, Perforce Helix Core,
Subversion, or Team Foundation Server) is enabled. This means that the source control interface
elements in Flare are visible, and you can use them to perform various tasks (e.g., commits,
synchronize changes).

Disabling a provider means that the source control interface elements are no longer shown. This
does not mean you cannot use source control. As long as the provider is still bound to the project,
you can perform source control tasks in a third-party tool outside of Flare.

How to Disable a Provider for All Projects
Globally
This is the easiest method if you have multiple projects and you want to disable the Git provider in
Flare for all of them.

1. Select File > Options.

2. Select the Source Control tab.

3. In the Bind Detection section, remove the check mark next to Git.

4. Click OK.

5. Close the project and then reopen it so that the option can take effect.

The provider option that is found in the Project Properties dialog or the Settings view in the
Source Control Explorer (i.e., the "Enabled" check box) will then automatically be disabled.

CHAPTER 5  94



How to Disable a Provider in an Individual
Project
Use this method if you want to disable a provider in just one project, rather than many projects.

1. Do one of the following, depending on the part of the user interface you are using:

n Source Control Explorer Select View > Source Control Explorer. Then, in the window
pane, click Settings.

2. Click Enabled to remove the check mark.

PROJECT PROPERTIES DIALOG

CHAPTER 5  95



SOURCE CONTROL EXPLORER

3. If you used the Project Properties dialog, click OK.

CHAPTER 5  96



What’s Noteworthy?

NOTE If you disable a Git provider, the local repository will continue to track your changes
in case you later decide to enable the provider once again.

If you disable one of the other providers (Perforce Helix Core, Subversion, Team Foundation
Server), your changes after that point will not be tracked. Therefore, if you later enable the
provider again, it will not have recorded any changes made since the time that you disabled
it.

NOTE When you disable a provider, that information is written to the registry on your
computer.

NOTE If you disable a provider, but then perform one of the following actions in the Flare
interface, the provider will automatically become enabled once again.

n Bind an existing project

n Bind a new project

n Bind a project to Central (either as secondary or primary provider)

n Import a project from source control

n Import a project from Central

NOTE Having a provider enabled in Flare does not interfere with your workflow if you are
performing source control actions exclusively outside of Flare. Even if a provider is enabled
in the project and the source control user interface elements are visible, this does not mean
Flare is automatically performing any source control actions with your files. It simply
means Flare is recognizing the binding, so it reflects your activities (e.g., the Pending
Changes window is populated when you make edits in topics). However, if you prefer not to
see any of this in Flare, you can disable the provider.

CHAPTER 5  97



Enabling Source Control Status
Checks

If you are using source control integration in Flare, you can check for frequent status changes
automatically. You can specify the number of minutes and seconds when you want Flare to ping
the source control repository and get status changes for files that have been committed,
synchronized, moved, deleted, etc. The upside of this feature is that you can ensure that the source
control status information is always up to date. The downside is that you may experience slower
performance due to this constant communication over the network.

How to Enable Source Control Status Checks
1. Select File > Options. The Options dialog opens..

2. Select the Source Control tab.

NOTE This tab will not be visible if your project is not yet bound to source control.
See "Binding a Project to Git" on page 14.

3. Click the check box Enable background status checks. A check mark in the box indicates that
the feature is enabled.

4. Enter the number of minutes and or seconds between each status update.

5. Click OK.

NOTE If you elect to disable this feature (disabled is the default setting), you can manually
check for status updates by refreshing the Pending Changes window pane or Source
Control Explorer. See "Viewing Modified Files" on page 124.

CHAPTER 5  98



Modifying Network Settings
You can view and change various source control network settings while working in Flare.

How to Modify Network Settings
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Network Settings.

n Right-Click If you have the Content Explorer, Project Organizer, Pending Changes
window pane, or File List open, right-click on any file and select Source Control >
Project > Network Settings.

n Source Control Explorer From the View ribbon, open the Source Control Explorer. From
the drop-down, select the Home Page view. Click Network Settings.

The Network Settings dialog opens.

2. In the Group field, select the group for which you want to change the settings.

OR

Do one of the following:

n (Optional) If you want to add a custom group, type its name in the Group field, then
click Add.

n (Optional) If you want to remove a group, select it from the Group field, then click
Remove.

3. (Optional) If you entered a custom group name, in the Remote Host field, enter the name of
the domain to which the network settings should apply.

CHAPTER 5  99



4. In the grid, make changes to the network settings as necessary. Click to sort the settings
by category, or click to sort them alphabetically.

GIT NETWORK SETTINGS
n Cookies

l Cookie File

l Save Cookies

n HTTP Proxy Options

l Proxy Host

n Identity

l User Agent

n Performance

l Enable EPSV

l Max Requests

l Maximum High Latency Time

l Min Sessions

l Minimum Transfer Speed

l POST Buffer Maximum

n SSL Configuration

l SSL CA File

l SSL CA Path

l SSL Certificate

l SSL Key File

l SSL Password Prompt

l Try SSL

l Verify SSL

CHAPTER 5  100



NOTE For more information about each of these settings, refer to:

https://git-scm.com/docs/git-config

5. Click Save.

CHAPTER 5  101



Publishing to Source Control
You can use Flare to directly publish your output to source control, rather than having to upload it to
source control separately. Publishing your output to source control is beneficial because it you can
keep previous versions of your output in source control and access them if necessary.

For more information about creating publishing destinations, see the online Help.

How to Publish Output to Source Control
1. Create a new source control publishing destination, or select an existing source control

publishing destination.

NOTE When creating a new source control destination, be sure to select Source
Control from the Type drop-down.

2. Assign the publishing destination to the target you want to publish.

3. Build and publish your output. Your output files will be published to the source control
location you specified in the destination.

CHAPTER 5  102



Reverting Modified Source Control
Files

If you have modified files from source control but do not want to keep your modifications, use the
"Revert" option instead of committing the files. While committing the file would save changes to
source control, reverting a file returns it to its previously committed state and does not commit any
of your new changes to source control. When reverting changes made in Git, you only revert
changes to the file on the branch you are currently editing. If you have a file that resides on multiple
branches, copies of the file on other branches are preserved.

How to Revert a Source Control File
1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project

Organizer, Pending Changes window pane), select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Revert (for selected files) or Source Control > Revert All
(for all files in the project).

n Right-Click If you have the Content Explorer, Project Organizer or File List open, right-
click the files you want to revert and select Source Control > Revert for selected files)
or Source Control > Project > Revert All for all files).

A dialog opens. The selected files are listed with check boxes next to them.

3. (Optional) If you want to see all files with pending changes (rather than only those you
selected), click .

4. Make sure to click the check box next to each appropriate file so that it contains a check
mark.

5. Click Revert.

CHAPTER 5  103



Rolling Back to an Earlier Version of a
File

One of the benefits of Flare's integrated source control is that you can view the history and
differences for a particular file. You can view code and content differences between two source
control versions of the same file. This is useful if you need to roll back to an earlier version of a file.

See "Viewing the History of Source Control Files" on page 122 and "Viewing Differences in Source
Control Files" on page 119.

EXAMPLE You have been working on a particular topic for a few days. Each day you pull
the remote commits to your local database, make your changes, and commit and push the
file back to the remote repository at the end of the day. At a certain point, you determine
that you need to "roll back" to an earlier version of the file, using it to replace the latest
version. Therefore, you use this feature to view the highlighted differences between the
current version and an older version of the file. Once you have identified the older version
that you want to use, you can retrieve that version.

How to Roll Back to an Earlier Version of a File
1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project

Organizer, Pending Changes window pane), select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the Content Explorer, Project Organizer, ending Changes
window pane, or File List open, right-click the file you want to roll back and select
Source Control > View History.

n Source Control Explorer With the Pending Changes pane open, ight-click the file you
want to roll back and select View History.

The History dialog opens.

CHAPTER 5  104



3. (Optional) View the differences between two versions of the file. This may help you decide
which version of the file you want to retrieve. (Another way is to look at the dates for each
version in the History dialog.)

To view the differences, follow these steps.

a. Select the first file version from the list.

b. Hold the CTRL key and select the second file version from the list.

c. Click Show Differences. The Differences Editor opens to the right, showing content
from the backup file on the left and the current version of the file on the right.

d. In the local toolbar of the Differences Editor, you can click any of the following to make
adjustments.

n Options Click this to open the File Differences dialog, which lets you change the
colors used to display content differences between the files.

n Show WYSIWYG Click this to switch from tag view to WYSIWYG (What You See Is
What You Get) view.

CHAPTER 5  105



n Ignore Case Click this to ignore changes in case when viewing differences. This
option can be used in "text view" only; it is not available in WYSIWYG view.

EXAMPLE If a word is not capitalized in the original file but it is
capitalized in the current file, this option does not highlight those
differences.

CHAPTER 5  106



CHAPTER 5  107



n Ignore Whitespace Click this to ignore whitespace when viewing differences.

EXAMPLE A paragraph is identical in both files, except for an extra
space that was added within the paragraph in one of those files. If you
click this option, that difference is not highlighted.

CHAPTER 5  108



e. When you are finished viewing the differences, close the window pane.

4. In the History dialog, select the version of the file to which you want to roll back.

5. Click Get Selected Version. That file is retrieved from the server and replaces the local copy of
the file in your project.

6. In the History dialog, click Close.

CHAPTER 5  109



Setting Color Options for Project File
Differences

If you are using Flare's integrated source control features, you can view differences between files in
various ways. One way is to view file differences between a local version of a Flare project and the
source control version.

When viewing file differences between a local version of a Flare project and the source control
version, you can select color options to display the files. Color coding makes it easier to discern
where differences between files occur.

For more information see "Viewing Differences in Source Control Files" on page 119.

EXAMPLE By default the files that are included only in your local copy are displayed as
green in the Differences Editor, and the files that are included only in source control are
displayed in red. You can use this dialog to change the local-only files to blue and the
source control–only files to yellow.

CHAPTER 5  110



How to Set Color Options for Project File
Differences

1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project
Organizer, Pending Changes window pane), select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Show Differences.

n Right-Click If you have the Content Explorer, Project Organizer, Source Control Explorer,
Pending Changes window pane, or File List open, right-click the file you want to view
and select Source Control > Show Differences.

The Differences Editor opens.

3. In the local toolbar of the Differences Editor, click Options. The File Differences dialog opens.

4. Change the text or background color for any of the difference types. To do this, simply click in
the appropriate Text or Background cell and select Pick Color. In the Color Picker dialog,
choose the new color.

5. Click OK.

CHAPTER 5  111



Unbinding a Git Provider From a
Project

When you unbind a provider, it means you are removing the connection altogether between the
Flare project and the local repository.

CHAPTER 5  112



How to Unbind a Provider in the Project
Properties

1. Open the project.

2. Select Project > Project Properties.

3. Select the Source Control tab.

4. Click Unbind Provider.

5. Click OK.

CHAPTER 5  113



How to Unbind a Provider in the Source Control
Explorer

1. Open the project.

2. Select View > Source Control Explorer.

3. From the drop-down or the Home pane, select Settings. The Settings pane opens.

4. Click Unbind Provider. (If your project is dual-bound, you will also see a section for the other
binding.)

5. In the confirmation dialog, click Yes.

CHAPTER 5  114



What’s Noteworthy?

NOTE You can also disable a provider, which retains the binding but hides source control
elements from the user interface.

NOTE If you are using a dual-bound setup where you are bound to MadCap Central and a
third-party provider, you might decide at some point to move to a single-bound
configuration, removing one of the bindings but leaving the other.

CHAPTER 5  115



Using Git for Windows
In Windows 10 version 1903, Microsoft implemented OpenSSH, which is the open-source version of
Secure Shell (SSH). As a result, a project bound to Git using SSH as the transfer protocol might
experience error messages (e.g., failed to start SSH session). The solution is to download and
install Git for Windows (Git.exe).

An upside to installing Git.exe is that it is likely to result in faster and better performance for file
transfers.

How to Download and Install Git.exe
1. Select File > Options.

2. Select the Source Control tab.

3. Click Get Git for Windows. A page opens on your browser, and the download should begin
automatically.

CHAPTER 5  116



NOTE If you already have Git.exe installed, but not the latest version, this link will
instead display “Get an updated version of Git for Windows.”

4. When the download finishes, open it.

5. Follow the steps in the wizard. We recommend you keep the default selections.

CHAPTER 5  117



6. After you click Install and the installation completes, click Finish.

After a few moments, the link in the Flare Options dialog should go away and you should see
this instead:

7. Click OK.

CHAPTER 5  118



Viewing Differences in Source Control
Files

One of the benefits of Flare's integrated source control is that you can view the history and
differences for a particular file.

Ways to View Differences Between Files
You can view differences between files in the following ways:

n Two Versions of Same Source Control File (History/Roll Back) You can view code and content
differences between two source control versions of the same file. This is useful if you need to
roll back to an earlier version of a file.

EXAMPLE You have been working on a particular topic for a few days. Each day you
pull the remote commits to your local database, make your changes, and commit and
push the file back to the remote repository at the end of the day. At a certain point,
you determine that you need to "roll back" to an earlier version of the file, using it to
replace the latest version. Therefore, you use this feature to view the highlighted
differences between the current version and an older version of the file. Once you
have identified the older version that you want to use, you can retrieve that version.

n Local Versus Source Control Version of a File You can view code and content differences
between the local version of a file and the source control version of that file.

EXAMPLE You modify a procedure topic from source control and then add some
lines of text to your local copy of that topic file. You save your changes. Later that
day, you want to revisit the new content that you wrote, but you cannot remember
exactly which lines of text you added. Therefore, you use this feature to highlight the
text differences between your local version of the file and the version stored in
source control. The new lines of text are highlighted on the side displaying the local
version of the file.

CHAPTER 5  119



How to View Differences Between Two Versions
of the Same Source Control File

1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project
Organizer, Pending Changes window pane), select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the Content Explorer, Project Organizer, Source Control Explorer,
Pending Changes window pane, or File List open, right-click the file(s) you want to view
and select Source Control > View History.

The History dialog opens.

3. From the list, select the first file version that you want to compare.

4. Hold the CTRL key and select the second file version from the list.

5. Select Show Differences. The Differences Editor opens.

6. (Optional) In the Differences Editor, use the buttons in the local toolbar to customize the
information shown in the editor.

7. When you are finished viewing the differences, close the window.

CHAPTER 5  120



How to View Differences Between the Local
Version of a File and the Source Control Version

1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project
Organizer, Pending Changes window pane), select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Show Differences.

n Right-Click If you have the Content Explorer, Project Organizer, Source Control Explorer,
Pending Changes window pane, or File List open, right-click the file(s) you want to view
and select Source Control > Show Differences.

The Differences Editor opens.

3. (Optional) In the Differences Editor, use the buttons in the local toolbar to customize the
information shown in the editor.

4. When you are finished viewing the differences, close the window.

CHAPTER 5  121



Viewing the History of Source Control
Files

One of the benefits of Flare's integrated source control is that you can view the history for a
particular file, including who committed the file and when it was committed. You can also view
differences between different versions of the file and roll back to an older version if necessary.

For more information see "Viewing Differences in Source Control Files" on page 119 and "Rolling
Back to an Earlier Version of a File" on page 104.

CHAPTER 5  122



How to View the History of a Source Control File
1. In one of the window panes (e.g., Content Explorer, Source Control Explorer, File List, Project

Organizer, Pending Changes window pane), select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the Content Explorer, Project Organizer, Source Control Explorer,
Pending Changes window pane, or File List open, right-click the file you want to view
and select Source Control > View History.

3. The History dialog opens. Following are explanations of the different parts of this dialog.

n Version Displays a number for each version of the file. The lower the number, the older
the version. The higher the number, the more recent the version.

n Users Displays the name of the user who has been working on the file.

n Date Displays the date and time when the action has occurred.

n Action Displays the action that has taken place for the file (e.g., modified).

n Comment Displays the comment (if any) associated with the file. A comment can be
added to a file when you commit that file to source control. This enables you to
maintain an audit trail for the file's history.

n Get Selected Version Retrieves a particular version of a file, thus rolling back to that
version of the file. The local version of the file is replaced with the source control
version that you selected.

n Show Differences Opens a dialog where you can view the differences between two
versions of a file. If you select one row in the History dialog and view the differences,
you will see the content differences between the version that you selected and the
version of the file in your local copy of the Flare project. If you select two files in the
History dialog (by holding down the CTRL key) and view the differences, you will see the
content differences between those two versions of the file.

4. In the History dialog, click Close.

CHAPTER 5  123



Viewing Modified Files
You can use the Pending Changes window pane and Source Control Explorer to view all of the files
that you have modified and need to commit.

How to View Modified Files—Pending Changes
Window Pane

1. Select Source Control > Pending Changes.

The Pending Changes window pane opens.

2. (Optional) You can use the Filter field to limit the files that are displayed.

n All Files Displays all iles.

n Topic Files Displays only the topic (HTM and HTML) files.

n Template Page Files Displays only the template page (FLMSP) files.

n Page Layout Files Displays only the page layout (FLPGL) files.

n Snippet Files Displays only the snippet (FLSNP) files.

n Micro Content Files Displays only the micro content (FLMCO) files.

n Stylesheet Files Displays only the stylesheet (CSS) files.

n Image Files Displays only the image files.

n Multimedia Files Displays only multimedia (audio, video, and 3D model) files.

n GIF Files Displays only GIF files.

n JPEG Files Displays only JPG and JPEG files.

n PNG Files Displays only PNG files.

n Flash Movie Files Displays only SWF files.

CHAPTER 5  124



3. Take note of the Status column. (You may need to use the scroll bar to view this column.)

n Status Displays the status of the file, such as whether you have modified the file.

l Checked Out This indicates that the file has been modified. You can commit the file
when you are ready.

l Pending Add This indicates that you have a file in your project but have not yet
added it to Git. This might occur, for example, if you create a new topic and do not
add the file to source control during the topic creation process. To resolve this,
simply right-click on the file and select Source Control > Add

How to View Modified Files—Source Control
Explorer

1. Select View > Source Control Explorer.

The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Pending Changes.

The Pending Changes pane opens. Files that you have changed appear in the Included
Changes or Excluded Changes section (depending on whether you are going to include or
exclude them in your next commit; see "Committing Source Control Files" on page 30). You
will not see other users' changes in the Source Control Explorer.

3. Take note of the file's status. The status is written in brackets next to the file name (e.g., edit,
add).

NOTE You can click the refresh button in the local toolbar to make sure you have
the most recent status for each file. Another option is that you can use a feature to
automatically ping the source control repository periodically, thus refreshing this
information frequently. However, you may experience slower performance with this
automatic status update option set. See "Enabling Source Control Status Checks" on
page 98.

CHAPTER 5  125



APPENDIX

PDFs
The following PDFs are available for download from the online Help.

Tutorials
Autonumbers Tutorial

Back-to-Top Button Tutorial

Context-Sensitive Help Tutorial

Custom Toolbar Tutorial

eLearning Tutorial—Basic

eLearning Tutorial—Advanced

Getting Started Tutorial

Image Tooltips Tutorial

Lists Tutorial

Meta Tags Tutorial

Micro Content Tutorial—Basic

Micro Content Tutorial—Advanced

Responsive Output Tutorial

Single-Sourcing Tutorial

Snippet Conditions Tutorial

Styles Tutorials

Tables Tutorial

Word Import Tutorial

APPENDIX  126



Cheat Sheets
Context-Sensitive Help Cheat Sheet

Folders and Files Cheat Sheet

Learning & Development Cheat Sheet

Lists Cheat Sheet

Micro Content Cheat Sheet

Print-Based Output Cheat Sheet

Search Cheat Sheet

Shortcuts Cheat Sheet

Structure Bars Cheat Sheet

Styles Cheat Sheet

APPENDIX  127



User Guides
Accessibility Guide

Analysis and Reports Guide

Architecture Guide

Autonumbers Guide

Branding Guide

Condition Tags Guide

Context-Sensitive Help Guide

Eclipse Help Guide

eLearning Guide

Getting Started Guide

Global Project Linking Guide

HTML5 Guide

Images Guide

Import Guide

Indexing Guide

Key Features Guide

Lists Guide

MadCap Central Integration
Guide

Meta Tags Guide

Micro Content Guide

Navigation Links Guide

Plug-In API Guide

Print-Based Output Guide

Project Creation Guide

QR Codes Guide

Reviews & Contributions With
Contributor Guide

Scripting Guide

Search Guide

SharePoint Guide

Skins Guide

Snippets Guide

Source Control Guide: Git

Source Control Guide:
Perforce Helix Core

Source Control Guide:
Subversion

Source Control Guide: Team
Foundation Server

Styles Guide

Tables Guide

Tables of Contents Guide

Targets Guide

Template Pages Guide

Templates Guide

Topics Guide

Touring the Workspace Guide

Transition From FrameMaker
Guide

Translation and Localization
Guide

Variables Guide

Videos Guide

What's New Guide

APPENDIX  128


	CHAPTER 1
	Introduction

	CHAPTER 2
	General Information for Git
	Common Source Control Terms
	Source Control Icons
	Bind Detection, Disabling Providers, and Unbinding Providers—Git


	CHAPTER 3
	Process for Git
	Binding a Project to Git
	Importing From Source Control
	Pulling Files From a Remote Repository
	Committing Source Control Files
	Synchronizing Source Control Files
	Pushing Files to a Remote Repository
	Merging Source Control Files


	CHAPTER 4
	Branch Activities for Git
	Creating Branches
	Publishing Branches
	Switching Branches
	Getting Remote Branches
	Merging Branches
	Reverting Branches
	Deleting Branches


	CHAPTER 5
	Other Activities for Git
	Adding and Editing an Ignore File
	Adding Files to Source Control
	Deleting Source Control Files
	Disabling the Get Latest Prompt for Source Control
	Disabling a Git Provider
	Enabling Source Control Status Checks
	Modifying Network Settings
	Publishing to Source Control
	Reverting Modified Source Control Files
	Rolling Back to an Earlier Version of a File
	Setting Color Options for Project File Differences
	Unbinding a Git Provider From a Project
	Using Git for Windows
	Viewing Differences in Source Control Files
	Viewing the History of Source Control Files
	Viewing Modified Files


	APPENDIX
	PDFs
	Tutorials
	Cheat Sheets
	User Guides



