
USER GUIDE

MADCAP FLARE DESKTOP 2025 r2

What's New

Copyright © 2025 MadCap Software. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the
purchaser's personal use without the written permission of MadCap Software.

MadCap Software
1660 17th Street, Suite 201
Denver, Colorado 80202
858-320-0387
www.madcapsoftware.com

THIS PDF WAS CREATED USING MADCAP FLARE.

CONTENTS

CHAPTER 1

Introduction 4

CHAPTER 2

ServiceNow® Versioning 5
Destination Editor Update 6
Enable Versioning 7
Workflow Selections Affect Versioning 11
Minor Updates to Access Controls 15

CHAPTER 3

Upcoming Deprecated Features 18

APPENDIX

PDFs 19
Tutorials 19
Cheat Sheets 20
User Guides 21

CONTENTS iii

CHAPTER 1

Introduction
Flare Desktop 2025 r2 release notes can be found here.

Following are the new features available in Flare Desktop 2025 r2.

For more information about each feature discussed in this manual, open the Help system and refer
to the "What's New" topic. Links are provided in some feature descriptions, taking you to topics that
contain additional information and steps.

"ServiceNow® Versioning" on page 5

n Supports the capability to keep updates in a draft state before pushing an article live

n The Destination Editor includes a new Use Versioning check box when the
versioning feature is enabled

"Upcoming Deprecated Features" on page 18

n List of features that will be deprecated

n Recommended replacements for deprecated features

CHAPTER 1 4

http://kb.madcapsoftware.com/knowledgebase/Default.htm#CSHID=GEN1079F

CHAPTER 2

ServiceNow® Versioning
Up to this point, any published updates from Flare Desktop would affect live articles in ServiceNow.
Flare Desktop now supports the capability to keep updates in a draft state before pushing an article
live.

Flare Desktop uses a REST API to communicate with ServiceNow instances. However, if you are
using versioning in ServiceNow, the standard REST API does not work due to the JavaScript that is
necessary for such functionality. Instead, you must add a custom scripted REST API in ServiceNow.

This chapter discusses the following:

Destination Editor Update 6

Enable Versioning 7

Workflow Selections Affect Versioning 11

Minor Updates to Access Controls 15

CHAPTER 2 5

Destination Editor Update
In the Destination Editor, when you connect to MadCap Connect for ServiceNow, there is a new Use
Versioning check box. This option is only available in the editor if the ServiceNow server supports
versioning, and if Flare Desktop has found the endpoint with a predefined name on the server. If the
option is enabled and it is selected, you can use the versioning feature.

CHAPTER 2 6

Enable Versioning
To enable the Use Versioning option, there is a little set up on the ServiceNow side having to do with
a custom scripted REST API. Consult with your ServiceNow administrator to help you, particularly
for the step that inserts JavaScript code to create a custom endpoint.

NOTE Since the following instructions take place on the ServiceNow side, they are
intended to be a guide in getting you started. Be aware that the user interface and items
such as labels, links, and options are subject to change over time. Please see ServiceNow
documentation.

ServiceNow Side
1. Install the Knowledge Management Advanced plugin. For more information, see

https://www.servicenow.com/docs/bundle/washingtondc-servicenow-
platform/page/product/knowledge-management/task/activate-knowledge-advanced-
plugin.html.

NOTE This plugin is installed by default since the Xanadu ServiceNow instance. For
older instances you will have to install the plugin for article versioning to work.

2. In the ServiceNow application, navigate to Knowledge > Administration > Properties, and from
Knowledge Management Properties, select Enable article versioning feature (set it to Yes).

NOTE This option in ServiceNow properties will not display unless the Knowledge
Management Advanced plugin is installed.

3. Create a custom endpoint with the name “MadCap Connect API” in a new REST API.

NOTE This step is required for the Flare Desktop side to support article versioning.
As the Flare Desktop user, you need to provide the JavaScript code to your
ServiceNow administrator to complete on the ServiceNow side.

CHAPTER 2 7

a. From System Web Services, click REST, and Scripted REST APIs.

b. Click New.

c. Provide a name for the REST API. It must be MadCap Connect API.

d. In the new REST API, navigate to Resources related list, and click New.

e. Ensure the following fields are set:

n Name MadCap Connect API

NOTE This will associate the custom endpoint with the JavaScript
function.

n Relative Path /{action}/{sys_id}

n HTTP Method POST

f. In the Script field of the resource, paste the following code. (Provide this code to your
administrator.)

(function process(request, response) {
var action = request.pathParams.action;
if (!action)

return new sn_ws_err.BadRequestError('Missing action parameter');
 action = action.toLowerCase();

if (action === 'status') {
var plugin = new GlideRecord('v_plugin');
var pluginFound = plugin.get('id', 'com.snc.knowledge_advanced');

// {plugin_active: active|inactive|unknown, feature_enabled:
true|false|unknown}

return {
 plugin_active: pluginFound ? plugin.getValue('active') :
'unknown',
 feature_enabled: gs.getProperty
('glide.knowman.versioning.enabled', 'unknown')
 };
 }

var sysId = request.pathParams.sys_id;
if (!sysId)

return new sn_ws_err.BadRequestError('Missing sys_id parameter');

CHAPTER 2 8

var topic = new GlideRecord('kb_knowledge');
if (!topic.get(sysId))

return new sn_ws_err.NotFoundError('No record found');

var kbVersioning = new KBVersioningSNC();
var result;
switch (action) {

case 'checkout':
 result = kbVersioning.checkout(topic, false);

if (result)
return { "sys_id": result.sys_id.toString() };

return new sn_ws_err.ServiceError('Checkout operation
failed');

case 'recall':
 kbVersioning.recall(topic);

return { "sys_id": topic.sys_id.toString() };
default:

return new sn_ws_err.BadRequestError('Invalid action.
Supported methods are: status, checkout and recall');
 }
})(request, response);

g. Save.

CHAPTER 2 9

Flare Desktop Side
Once the custom endpoint is set in ServiceNow with the plugin (depending on your instance), the
article versioning property is enabled, and the JavaScript code is associated with the new REST API,
then the Use Versioning option can be enabled in Flare Desktop’s Destination Editor. (Behind the
scenes, Flare Desktop and ServiceNow communicate via ping and response to confirm the
endpoint is properly configured.)

NOTE You might see a warning icon next to Use Versioning if something in the setup is
wrong. Click it for dynamic information specific to your case.

The information is intended for your administrator. A check mark indicates a successful
element while an "X" indicates a failed one.

Do the following in the Destination Editor.

n (Optional) Select the Use Versioning check box. This is optional because you do not have to
use the versioning feature to publish to ServiceNow.

n Select a workflow for your content (e.g., Draft, Review, Published).

CHAPTER 2 10

Workflow Selections Affect Versioning
The Destination Editor Content options allow you to select a workflow for the output files uploaded
to ServiceNow. Although this drop-down is nothing new, you can achieve different versioning
results in ServiceNow if you switch between workflow options.

EXAMPLE With Use Versioning enabled, this illustrates how versioning might work when
publishing from Flare Desktop to ServiceNow.

Workflow option: Draft. This shows the first draft of an article, unpublished. In addition a
log file is created.

CHAPTER 2 11

Workflow option: Published. You decide the article is fine, so you want to select Published.

Workflow option: Draft. You need to make the published version a draft again. With
versioning, a "copy" is created, while the published version is preserved (and live, available
to the public).

CHAPTER 2 12

Workflow option: Review. You want the article reviewed, so you publish from a Draft state
to Review. A new version of the article is created while incrementing the version number
up.

Workflow option: Published. You decide it is time to publish your article again. You select
Published. This publishes a new public version, and it retires the older articles.

CHAPTER 2 13

NOTE If you use versioning an article is automatically uploaded that is specific to the
target and the project. It will remain as Draft in ServiceNow, regardless if you change the
workflow drop-down (e.g., Draft, Review, Published). The purpose of this article is to hold a
log file (for all articles in the project).

NOTE When an article is first created from Flare Desktop or in ServiceNow it displays as
0.01. This is an "unpublished" version.

NOTE If the Use Versioning option is not enabled, it behaves as it did prior to the
ServiceNow refactor. It does not care about versioning. It does not create extra articles
when switching from Draft to Published or Published to Draft. For example, if you publish
as Draft for the first time, the article is 0.01. If you publish again as Published that article
will be 1.0. But, if you publish again as Draft, the article is going to change to 1.01—and it
does not create a "copy," meaning it does not keep it as Published and create a new Draft
article. Instead it alters the same article, and it will affect the article that is live because it
will be switched to a Draft state and will be unavailable to the public.

CHAPTER 2 14

Minor Updates to Access Controls

Publishing User Roles
The Knowledge Admin role does not need to be assigned to a publishing user. Instead, use a
MadCap Connect role. Initially, this role does not have access to anything, but you can give it
access to certain tables as needed.

Creating Roles With a Script
If you have multiple roles to set up and need to create different access controls it can be time-
consuming to do that manually for each one. You can optionally run a JavaScript to 1) create a role
with your specified name, 2) generate all required access control lists (ACLs) for the role, and 3)
easily identify the ACL with an added description.

Since the following instructions take place on the ServiceNow side, they are intended to be a guide
in getting you started. Be aware that the user interface and items such as labels, links, and options
are subject to change over time. Please see ServiceNow documentation.

1. In the ServiceNow application, navigate to All > Scripts (i.e., System Definition - Scripts -
Background).

2. In the Script field, paste the following code. Be sure to edit role name variable with the correct
name (e.g., MadCap Connect).

// Set the role name before running the script!
var roleName = 'MadCap Connect';

var roleGr = new GlideRecord('sys_user_role');
 roleGr.addQuery('name', roleName);
 roleGr.query();

if (roleGr.next()) {
 gs.info('Role ' + roleName + ' already exists. Exiting script.');
 } else {

// Create the role
 roleGr = new GlideRecord('sys_user_role');
 roleGr.initialize();
 roleGr.name = roleName;

CHAPTER 2 15

 roleGr.description = roleName;
var roleSysId = roleGr.insert();

 gs.info('Created role: ' + roleName);

var aclData = [
{table: 'kb_knowledge_base', operation: 'read'},
{table: 'kb_category', operation: 'read'},
{table: 'kb_category', operation: 'create'},
{table: 'kb_category', operation: 'write'},
{table: 'kb_category', field: 'parent_table', operation: 'write'},
{table: 'kb_category', field: 'parent_id', operation: 'write'},
{table: 'kb_knowledge', operation: 'read'},
{table: 'kb_knowledge', operation: 'create'},
{table: 'kb_knowledge', operation: 'write'},
{table: 'kb_knowledge', operation: 'delete'},
{table: 'kb_knowledge', field: 'workflow_state', operation: 'write'},
{table: 'kb_keyword', operation: 'read'},
{table: 'kb_keyword', operation: 'create'},
{table: 'kb_keyword', operation: 'write'},
{table: 'kb_keyword', operation: 'delete'},
{table: 'kb_knowledge_keyword', operation: 'read'},
{table: 'kb_knowledge_keyword', operation: 'create'},
{table: 'kb_knowledge_keyword', operation: 'write'},
{table: 'kb_knowledge_keyword', operation: 'delete'},
{table: 'label', operation: 'read'},
{table: 'label', operation: 'create'},
{table: 'label', operation: 'delete'},
{table: 'label_entry', operation: 'read'},
{table: 'label_entry', operation: 'create'},
{table: 'label_entry', operation: 'write'},
{table: 'label_entry', operation: 'delete'},
{table: 'label_entry', field: 'table', operation: 'write'},
{table: 'label_entry', field: 'table_key', operation: 'write'},
{table: 'v_plugin', operation: 'read'},
{table: 'sys_ws_definition', operation: 'read'},
{table: 'sys_translated_text', operation: 'read'},
{table: 'sys_translated_text', operation: 'create'},
{table: 'sys_translated_text', operation: 'write'}

];
// Create ACLs

 aclData.forEach(function(acl) {
var gr = new GlideRecord('sys_security_acl');

 gr.initialize();
 gr.name = acl.table + (acl.field ? '.' + acl.field : '');
 gr.operation = acl.operation;
 gr.type = 'record';
 gr.description = roleName;

var aclId = gr.insert();

CHAPTER 2 16

 gs.info('Created ACL: ' + gr.name + ' (' + gr.operation + ')');

// Add role to ACL
var aclRoleGr = new GlideRecord('sys_security_acl_role');

 aclRoleGr.initialize();
 aclRoleGr.sys_security_acl = aclId;
 aclRoleGr.sys_user_role = roleSysId;
 aclRoleGr.insert();
 });

 gs.info('Completed creating role and ' + aclData.length + ' ACL
records');
 }

3. Click Run Script.

If you run the above script, it replaces two "manual" steps:

n Creating a user role.

n Creating required access records in different tables and assigning a user role to them.

CHAPTER 2 17

CHAPTER 3

Upcoming Deprecated Features
Following are features that will be removed in a future release of MadCap Flare Desktop, alongside
features that we recommend as replacements.

Deprecated Features Recommended Replacements

DITA Output Clean XHTML Output or HTML5 Output

Feedback Flare Online Analytics

Pulse Flare Online Analytics

Toolstrip Ribbons

WebHelp and WebHelp Plus HTML5 Output

To provide feedback on these deprecated lists, please send an email to:

supportplanrep@madcapsoftware.com.

CHAPTER 3 18

mailto:supportplanrep@madcapsoftware.com?subject=Deprecated Features

APPENDIX

PDFs
The following PDFs are available for download from the Help system.

Tutorials
Autonumbers Tutorial

Back-to-Top Button Tutorial

Context-Sensitive Help Tutorial

Custom Toolbar Tutorial

eLearning Tutorial—Basic

eLearning Tutorial—Advanced

Getting Started Tutorial

Image Tooltips Tutorial

Lists Tutorial

Meta Tags Tutorial

Micro Content Tutorial—Basic

Micro Content Tutorial—Advanced

Responsive Output Tutorial

Single-Sourcing Tutorial

Snippet Conditions Tutorial

Styles Tutorials

Tables Tutorial

Word Import Tutorial

APPENDIX 19

Cheat Sheets
Context-Sensitive Help Cheat Sheet

Folders and Files Cheat Sheet

Learning & Development Cheat Sheet

Lists Cheat Sheet

Micro Content Cheat Sheet

Print-Based Output Cheat Sheet

Search Cheat Sheet

Shortcuts Cheat Sheet

Structure Bars Cheat Sheet

Styles Cheat Sheet

APPENDIX 20

User Guides
Accessibility Guide

Analysis and Reports Guide

Architecture Guide

Autonumbers Guide

Branding Guide

Condition Tags Guide

Context-Sensitive Help Guide

Eclipse Help Guide

eLearning Guide

Flare Online Integration
Guide

Getting Started Guide

Global Project Linking Guide

HTML5 Guide

Images Guide

Import Guide

Indexing Guide

Key Features Guide

Lists Guide

Meta Tags Guide

Micro Content Guide

Navigation Links Guide

Plug-In API Guide

Print-Based Output Guide

Project Creation Guide

QR Codes Guide

Reviews & Contributions With
Contributor Guide

Scripting Guide

Search Guide

SharePoint Guide

Skins Guide

Snippets Guide

Source Control Guide: Git

Source Control Guide:
Perforce Helix Core

Source Control Guide:
Subversion

Source Control Guide: Team
Foundation Server

Styles Guide

Tables Guide

Tables of Contents Guide

Targets Guide

Template Pages Guide

Templates Guide

Topics Guide

Touring the Workspace Guide

Transition From FrameMaker
Guide

Translation and Localization
Guide

Variables Guide

Videos Guide

What's New Guide

APPENDIX 21

	CHAPTER 1
	Introduction

	CHAPTER 2
	ServiceNow® Versioning
	Destination Editor Update
	Enable Versioning
	Workflow Selections Affect Versioning
	Minor Updates to Access Controls

	CHAPTER 3
	Upcoming Deprecated Features

	APPENDIX
	PDFs
	Tutorials
	Cheat Sheets
	User Guides

