
USER GUIDE  

MADCAP LINGO 11 r3

Source Control: Git



Copyright © 2023 MadCap Software. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is furnished
under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with
the terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose
other than the purchaser's personal use without the written permission of MadCap Software.

MadCap Software
9171 Towne Center Drive, Suite 335
San Diego, California 92122
858-320-0387
www.madcapsoftware.com

THIS PDF WAS CREATED USING MADCAP FLARE.



CONTENTS

CHAPTER 1

Introduction 5

CHAPTER 2

General Information for Git 7
Common Source Control Terms 8
Source Control Icons 9
Bind Detection, Disabling Providers, and Unbinding
Providers 10

CHAPTER 3

Process for Git 13
Binding a Project to Git 14
Importing From Git 22
Pulling Files From a Remote Repository 26
Committing Source Control Files 29
Synchronizing Source Control Files 31
Pushing Files to a Remote Repository 34
Merging Source Control Files 37

CHAPTER 4

Branch Activities for Git 40
Creating Branches 41

CONTENTS iii



Publishing Branches 44
Switching Branches 48
Getting Remote Branches 54
Merging Branches 57
Reverting Branches 60
Deleting Branches 63

CHAPTER 5

Other Activities for Git 67
Adding and Editing an Ignore File 68
Disabling the Get Latest Prompt for Source Control 72
Disabling a Git Provider 73
Enabling Source Control Status Checks 76
Modifying Network Settings 77
Reverting Modified Source Control Files 80
Rolling Back to an Earlier Version of a File 81
Setting Color Options for Project File Differences 87
Unbinding a Git Provider From a Project 89
Using Git for Windows 93
Viewing Differences in Source Control Files 95
Viewing Modified Files 98
Viewing the History of Source Control Files 100

APPENDIX

PDFs 102
Cheat Sheets 102
User Guides 102

CONTENTS iv



CHAPTER 1

Introduction
Git is a source control system that uses distributed development, as opposed to a centralized
workflow used by other systems. This means that each writer has a local Git repository, as well as
being bound to a remote repository (created via GitHub, Bitbucket, etc.), which other authors may
also be connected to. As each author works, changes are made and committed in the local
repository, which can then be synchronized with the remote repository. You can use the Lingo
interface to perform various source control tasks for a project that is bound to Git. Alternatively,
you can use a third-party solution to perform tasks.

General Information

n "Common Source Control Terms" on page 8

n "Source Control Icons" on page 9

n "Bind Detection, Disabling Providers, and Unbinding Providers" on page 10

Process

1. Install and Set Up Git (done outside of Lingo)

2. "Binding a Project to Git" on page 14

3. (Other Team Members) "Importing From Git" on page 22

4. "Pulling Files From a Remote Repository" on page 26

5. "Committing Source Control Files" on page 29

CHAPTER 1  5



6. "Synchronizing Source Control Files" on page 31 or "Pushing Files to a Remote Repository"
on page 34

7. "Merging Source Control Files" on page 37

CHAPTER 1  6



CHAPTER 2

General Information for Git
There are various pieces of general information you should know if you plan to use this feature.

This chapter discusses the following:

Common Source Control Terms 8

Source Control Icons 9

Bind Detection, Disabling Providers, and Unbinding Providers 10

CHAPTER 2  7



Common Source Control Terms
Following are definitions for some of the common phrases used in Lingo's integrated source
control with Git.

n Bind This means to connect your project to Git. After doing this, you can then take
advantage of all the automated source control tasks (such as commit, revert, pull, push, and
so on).

n Commit This means to record changes to your Lingo files to the local Git repository.

n Revert This means to undo changes you have made to a Lingo branch or file. Changes are
reverted to the way they were at the last commit.

n Synchronize This pulls the files from the remote Git repository and merges them with your
local database, then pushes your local changes back to the remote Git repository.

n Pull This retrieves commits from the remote Git repository and merges them with the files in
your local database.

n Push This sends commits from your local database to the remote Git repository.

n Branch This creates a new path for commits. This lets you create new versions of a file while
keeping the original file unchanged (e.g., for documenting a new feature, testing page
layouts, or rewriting existing information). You can create as many branches as you want.

NOTE Lingo integrates with multiple source control providers to provide built-in source
control support. Each of the source control providers built-in to Lingo uses different terms.
As such, Lingo's source control interface is different depending on which source control
provider you use. Please refer to the sections for each source control provider if you need
to see information about the terms used by other built-in systems.

CHAPTER 2  8



Source Control Icons
Following are descriptions for the primary icons that you may see next to files when using Git.

Modified

This indicates that the file has been modified. You can commit the file to your local Git
repository when you are ready.

New File (Pending Add)

This indicates that you have a file in your project but have not yet added it to Git. This
might occur, for example, if you create a new topic and do not add the file to source
control during the topic creation process. To resolve this, simply right-click on the file
and select Source Control > Add.

CHAPTER 2  9



Bind Detection, Disabling Providers,
and Unbinding Providers

Lingo has options for bind detection, disabling providers, and unbinding providers. Although these
are separate features, they are all somewhat related. This information is especially important if you
are using an external tool to bind and manage your source control tasks.

Bind Detection
Lingo's bind detection settings are found on the Source Control tab of the Options dialog.

CHAPTER 2  10



Bind detection scans your project when you load it to see if the project has been previously bound
to source control. If a binding is detected, you then have the option of applying the binding and
committing the project to source control. Depending on the provider you are using, Lingo may
search the file system and its artifacts, as well as contact and query servers, to find potential
source control bindings.

When you open a Lingo project that hasn't been bound to source control before, the bind detection
option is disabled for Perforce Helix Core, Subversion, and Team Foundation Server. It is enabled
by default for Git. If you bind a project to source control using the Lingo interface, the option is then
automatically enabled.

NOTE If you bind a project to Git using the Lingo interface, the detection will automatically
happen behind the scenes. If you use a tool outside of Lingo for the Git binding, you may or
may not want to enable bind detection. For example, you might create a folder where you
store all of your Lingo projects, and you use an external tool to create the bindings, with a
.Git folder stored at the root level of that main folder. In that case, you would want the bind
detection option on this tab disabled for Git.

NOTE You can use bind detection as an alternative to importing a Lingo project. If you
have received a Lingo project file (e.g., by copying it from a server, by opening it from a
network location), you can simply open the file and Lingo will search for and apply existing
source control bindings.

NOTE Source control providers are scanned in the following order:

1. Git

2. Subversion

3. Perforce Helix Core

TIP Detecting source control bindings may take a considerable amount of time. It is
recommended that you select only the source control providers that you use to speed up
the detection process.

CHAPTER 2  11



Disabling Providers
By default, when a project is bound to source control, the provider (Git, Perforce Helix Core,
Subversion, or Team Foundation Server) is enabled. This means that the source control interface
elements in Lingo are visible, and you can use them to perform various tasks (e.g., commits,
synchronize changes).

Disabling a provider means that the source control interface elements are no longer shown. This
does not mean you cannot use source control. As long as the provider is still bound to the project,
you can perform source control tasks in a third-party tool outside of Lingo.

For more details and steps, see "Disabling a Git Provider" on page 73.

Unbinding Providers
When you unbind a provider, it means you are removing the connection altogether between the
Lingo project and the local repository.

You can unbind a provider via the Project Properties dialog or the Settings view in the Source
Control Explorer. Click the Unbind Provider button.

For more details and steps, see "Unbinding a Git Provider From a Project" on page 89.

CHAPTER 2  12



CHAPTER 3

Process for Git
Certain tasks must be completed in order when using this feature.

This chapter discusses the following:

Binding a Project to Git 14

Importing From Git 22

Pulling Files From a Remote Repository 26

Committing Source Control Files 29

Synchronizing Source Control Files 31

Pushing Files to a Remote Repository 34

Merging Source Control Files 37

CHAPTER 3  13



Binding a Project to Git
Use the following steps if you have already created a Lingo project and want to bind ("connect") it
to Git. You can also automatically detect existing source control bindings if your project has been
previously connected to Git.

When using Git for source control, every Lingo project will have a local repository. So after you
bind a Lingo project to Git, you will see a folder named ".git" alongside your other project folders in
Windows Explorer. You will see a .gitignore file, which prevents unnecessary folders and files from
being included in the source control processes.

As you work in your project, changes can be committed to your local repository. Then, you would
periodically synchronize (i.e., pull, push) files with your remote repository. This allows other people
on your team to get your changes, and it lets you get their changes as well.

NOTE The following steps show how to bind a project using the Lingo interface. It is also
possible to bind a project outside of Lingo (e.g., using Git Bash). If you decide to do this,
you should be aware of some additional aspects of source control, such as bind detection
and disabling providers.

NOTE Each project bound to Git must have its own source control repository. Also, when
first binding a project to Git, the repository must be empty. For example, if you are using a
third-party solution such as GitHub to create a remote repository, you might initially be
presented with options (such as README or .gitignore) that add files to your new
repository. If you select any of these options and then attempt to bind the project to Git,
you will experience an error that looks something like this: "Destination already in use by
another project. Please push to an empty remote."

Therefore, you should avoid selecting any such options when creating your remote
repository. After you bind the project to the remote Git repository, you can then return to
that repository and add the README or other files as necessary.

CHAPTER 3  14



How to Bind a Project Using the Project
Properties Dialog

1. Select File > Project Properties.

2. Select the Source Control tab.

3. Click Bind Project. The Bind Project dialog opens.

4. From the drop-down, select Git.

CHAPTER 3  15



5. If you are going to bind to a remote repository, select Remote Repository, then enter the
address of the repository in the field. If you want to work locally, you can leave this box
unselected. You can enter an HTTP URL or an SSH URL.

NOTE You may need to obtain this information from your system administrator.

6. If you want to push to the remote repository when you bind the project, select the Push on
bind check box. This will push the initial project files to the repository when you bind the
project.

7. In the Name field, enter your name.

8. In the Email field, enter your email address.

9. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with
other tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

10. (Optional) In the Comment field, you can enter any internal comments.

11. In the Bind Project dialog, click OK.

12. In the Project Properties dialog, click OK.

13. (Optional) If you entered an HTTP address, enter your user name and password in the Log In
dialog. Click OK when you are finished.

14. (Optional) If you entered an SSH URL, the Certificate Specification dialog opens. In the
dialog, do the following and click OK when you are finished:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Lingo to remember your key information so you do not need to enter it
again later, select the check box next to Save certificate information.

CHAPTER 3  16



NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab).
Follow the directions provided by your source control provider to add these
keys to your Git account. Once you generate these keys, they are typically
found in the C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

CHAPTER 3  17



How to Bind a Project Using the Explorer
1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Settings. The Settings pane opens.

3. Click Bind. The Bind Project dialog opens.

4. From the drop-down, select Git.

5. If you are going to bind to a remote repository, select Remote Repository, then enter the
address of the repository in the field. If you want to work locally, you can leave this box
unselected. You can enter an HTTP URL or an SSH URL.

NOTE You may need to obtain this information from your system administrator.

6. If you want to push to the remote repository when you bind the project, select the Push on
bind check box. This will push the initial project files to the repository when you bind the
project.

CHAPTER 3  18



7. In the Name field, enter your name.

8. In the Email field, enter your email address.

9. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with
other tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

10. (Optional) In the Comment field, you can enter any internal comments.

11. In the Bind Project dialog, click OK.

12. In the Project Properties dialog, click OK.

13. (Optional) If you entered an HTTP address, enter your user name and password in the Log In
dialog. Click OK when you are finished.

14. (Optional) If you entered an SSH URL, the Certificate Specification dialog opens. In the
dialog, do the following and click OK when you are finished:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Lingo to remember your key information so you do not need to enter it
again later, select the check box next to Save certificate information.

CHAPTER 3  19



NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab).
Follow the directions provided by your source control provider to add these
keys to your Git account. Once you generate these keys, they are typically
found in the C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

CHAPTER 3  20



What’s Noteworthy?
TIP If you are having difficulty binding your project, try binding to a brand new directory in
your source control provider. You should also ensure that the directory on your local
machine (and its parent directories) is not already mapped to source control, as this may
cause issues with binding.

NOTE You can also bind a new Lingo project to source control while creating it.

NOTE When you bind a project to Lingo using Git, a .gitignore text file is created in your
local project folder. Advanced users can edit the .gitignore file with a text editor to control
which files or folders can be pushed to your Git repository. You can also specify which files
and folders are ignored by Git, and are not pushed to the repository.

CHAPTER 3  21



Importing From Git
This topic focuses on importing a Lingo project from source control. You might use this method, for
example, if you are working on a project with several other translators and another member of the
team has placed the Lingo project in Git.

How to Import a Project From Git
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select File > New Project > Import Project.

n Source Control Explorer From the View ribbon, open the Source Control Explorer.
From the drop-down, select the Home pane. Click Import Project.

The Import Project from Source Control Wizard dialog opens.

2. From the drop-down, select Git.

3. In the Remote drop-down, enter the remote repository where the project is located.

NOTE You may need to obtain this information from your system administrator.

4. In the Name field, enter your name.

5. In the Email field, enter your email address.

6. From the Save Per drop-down, select how you want to save your files.

n User Saves the files in your local folder. Select this option if you are working with
other tools (e.g., Tortoise) or if you want to use the same user identity across multiple
projects.

n Project Saves the files locally to your project. Select this option if you want to use
different identities for each project.

7. Click Next.

CHAPTER 3  22



8. Next to the Project field, click Browse. The Browse Source Control Files dialog opens. (You
may need to log in with your user name and password.)

9. (Optional) If the remote you selected in Step 3 requires an SSH certificate, the Certificate
Specification dialog opens. In the dialog, do the following:

a. In the Public key field, enter your public SSH key, or use to browse for the key on
your network.

b. In the Private key field, enter your private SSH key, or use to browse for the key on
your network.

c. If you want Lingo to remember your key information so you do not need to enter it
again later, select the check box next to Save certificate information.

NOTE SSH keys allow you to establish a secure connection between your
computer and your Git source control provider (likewise, using an SSH URL is
more secure than an HTTP URL; you need to use SSH keys if you want to use
an SSH URL). If you do not have a public and private SSH key, your can
generate these keys using your Git source control provider (e.g., Gitlab).
Follow the directions provided by your source control provider to add these
keys to your Git account. Once you generate these keys, they are typically
found in the C:\Users\[username]\.ssh folder on your computer.

Public keys typically have a .pub extension. Private keys use the same file
name as the public key, but without the file extension.

CHAPTER 3  23



EXAMPLE Use the following as guides when setting up your URLs and keys.

SSH URL

git@gitlabomnibus.mycompany.corp:MyUserName/myproject.git

HTTP URL

http://gitlabomnibus.mycompany.corp/MyUserName/myproject.git

SSH Private Key

mycompanySSHkey_id_rsa

SSH Public Key

mycompanySSHkey_id_rsa.pub

10. Find and click on the Lingo project file (LIPRJ) that you want to import. (You may need to log
in with your user name and password.)

11. Click OK.

12. Click Next..

13. In the Project name field, the name of the project being imported is displayed. It is
recommended that you leave the name as it is, especially if you are working with other users
on the project. However, you can enter a different project name if you want.

14. In the Project folder field, either accept the default location for the new project or click to
browse for and select a folder.

15. Click Finish. The project is imported and loaded into Lingo.

CHAPTER 3  24



NOTE If you want to import a project from source control, you can alternatively open the
project file from another location (e.g., a server location), and then use Lingo's bind
detection functionality to automatically apply available source control bindings to the
project.

CHAPTER 3  25



Pulling Files From a Remote
Repository

If you need to update the files in your local database, you can do a pull. When you pull files, Lingo
retrieves files from the remote repository and downloads them to your local Git database. This
updates your current branch with the most current version of the file. This is a good way to get
changes that other users have made to a file and pushed to the remote.

When you pull, you will see the Resolve Version Conflict dialog if conflicts exist between the
remove files and the files in your local database.

How to Pull Files From a Remote Repository
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Pull.

n Right-Click In the File List, right-click any file and select Source Control > Project >
Pull.

2. (Optional) If you did not commit your files before starting the pull, a dialog asks if you want to
commit your files. Click Yes to continue. See "Committing Source Control Files" on page 29.

NOTE You must commit all modified files to proceed with the pull.

3. The Select Remote for Pull dialog opens. From the Remote drop-down, select the repository
you want to pull from.

CHAPTER 3  26



4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

CHAPTER 3  27



d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Pull dialog, click OK. If the Log In dialog opens, complete the User
name and Password fields and click OK.

6. If the remote and local files are the same, a message tells you so. Click OK.

If a remote file is different from the version in your local database, the Resolve Conflicts
dialog opens. If you want to accept all of the differences between the remote and local files,
thus merging them, click Auto Merge All. If you want to review the differences in the files
side by side and resolve each conflict, click Resolve. For more information about merging
files and resolving conflicts, see "Merging Source Control Files" on page 37.

CHAPTER 3  28



Committing Source Control Files
When you are finished editing files, you can commit them to source control. Committing a file adds
your changes to the local Git database. It is a good idea to periodically commit files so that they are
organized in logical chunks with a comment that accurately summarizes the changes. When you
are ready to add your local commits to the remote repository, you can push these files to the
remote. Committing and pushing changes frequently can help to avoid conflicting changes from
other users, although conflicts are bound to occur from time to time.

How to Commit Files to Source Control
1. Do one of the following, depending on the part of the user interface you are using:

n Status Bar In the lower-right of Lingo, click (a number indicates how many files
have changes that need to be committed).

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Commit (for selected files) or Source Control >
Commit All (for all files in the project).

n Right-Click In the File List, right-click the file you want to commit and select Source
Control > Commit (for selected files) or Source Control > Project > Commit All (for all
files in the project).

The Commit dialog opens. The selected files are listed with check boxes next to them.

2. Enter a comment tied to the commit. This enables you to keep an audit trail for a file. The
comment can then be viewed from the History dialog, which can be accessed from the
Source Control Explorer, the Source Control ribbon, or the Source Control button .

3. Click Commit.

CHAPTER 3  29



How to Commit Files to Source Control Using
the Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Pending Changes.

The Pending Changes pane opens. Files that will be committed are listed under Included
Changes, and files that will not be committed are listed under Excluded Changes. You can
identify edited files because [modified] is displayed next to the file name.

NOTE When you modify a file in source control, you may sometimes see a SKL file
alongside the XLF and original files. This skeleton file is a placeholder file. Be sure
to commit all three associated files together. Committing just the SKL file may result
in errors.

3. In the Comment field, enter a comment tied to the commit. This enables you to keep an audit
trail for a file. The comment can then be viewed from the History dialog, which can be
accessed from the Source Control Explorer, the Source Control ribbon, or the Source
Control button .

4. (Optional) If you want to select the files or folders that you include in the commit, right-click a
file or folder and select one of the following options from the context menu.

n Exclude Excludes the selected file from the commit

n Exclude Unselected Excludes all unselected files from the commit

n Include Includes the selected file in the commit

n Include Unselected Includes all unselected files in the commit

5. Click Commit Included to commit all of the files in the Included Changes list.

CHAPTER 3  30



Synchronizing Source Control Files
Synchronizing files performs a pull to update the local database with files from the remote
repository, and then pushes any local commits to the remote repository. Changes made during a
synchronize affect your current branch. You will see the Resolve Version Conflict dialog if conflicts
exist when you synchronize your files.

If a remote file is different from the version in your local database, the Resolve Conflicts dialog
opens. If you want to accept all of the differences between the remote and local files, thus merging
them, click Auto Merge All. If you want to review the differences in the files side by side and
resolve each conflict, click Resolve

How to Synchronize Files
1. Do one of the following, depending on the part of the user interface you are using:

n Status Bar In the lower-right of Lingo, click . A number next to the up arrow
indicates how many commits need to be pushed. If you see a number next to the down
arrow on this button, it indicates that there are pending remote commits that you still
need to pull to your local repository. A number displays next to the down arrow only
after you do a fetch (i.e., "git fetch"). This is a command that you cannot perform from
the Lingo interface, but you can do it using another tool such as Git Bash. Another way
for a number to display next to the down arrow is if you first do a pull on one branch,
then switch to another branch that has pending remote commits.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

NOTE After committing changes, you might need to click somewhere in the
interface before numbers populate next to this button.

n Ribbon Select Source Control > Synchronize.

n Right-Click In the File List, right-click any file and select Source Control > Project >
Synchronize.

CHAPTER 3  31



2. (Optional) If you did not commit your files before starting the synchronize, a dialog asks if
you want to commit your files. Click Yes to continue. See "Committing Source Control Files"
on page 29.

NOTE You must commit all modified files to proceed with the synchronization.

3. The Select Remote for Synchronize dialog opens. From the Remote drop-down, select the
repository you want to synchronize with.

4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

CHAPTER 3  32



NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Synchronize dialog, click OK. If the Log In dialog opens, complete
the User name and Password fields and click OK.

6. If a remote file is different from the version in your local database, the Resolve Conflicts
dialog opens. If you want to accept all of the differences between the remote and local files,
thus merging them, click Auto Merge All. If you want to review the differences in the files
side by side and resolve each conflict, click Resolve For more information about merging
files and resolving conflicts, see "Merging Source Control Files" on page 37.

CHAPTER 3  33



Pushing Files to a Remote Repository
After you commit the changes from your project to the local Git repository, you can push them to
the remote Git repository. Performing a push sends all of the files you have committed on your
current branch to the remote repository. This is a way to back them up to source control and for
other users to have access the changes you have made.

How to Push Files To a Remote Repository
1. Do one of the following, depending on the part of the user interface you are using:

n Status Bar In the lower-right of Lingo, click (a number next to the up arrow
indicates how many commits need to be pushed).

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Push.

n Right-Click In the File List, right-click a file and select Source Control > Project >
Push.

2. (Optional) If you did not commit your files before starting the push, a dialog asks if you want
to commit your files. Click Yes to continue. See "Committing Source Control Files" on page
29.

NOTE You must commit all modified files to proceed with the push.

3. The Select Remote for Push dialog opens. From the Remote drop-down, select the
repository you want to push to.

CHAPTER 3  34



4. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.(Optional)

TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

c. Click Add to add the new repository to the list of available repositories.

CHAPTER 3  35



d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

5. In the Select Remote for Push dialog, click OK. If the Log In dialog opens, complete the User
name and Password fields and click OK.

6. If the local changes are different from those in the remote, you will see an error in the
Progress dialog during the push. Perform a pull, then attempt the push again. See "Pulling
Files From a Remote Repository" on page 26.

CHAPTER 3  36



Merging Source Control Files
There may be times when you need to merge changes from different authors when synchronizing
or pulling files. The merge occurs automatically if there are no conflicting changes (i.e., changes
do not occur in the same location in the file). If there are conflicting changes, a dialog opens,
allowing you to determine how changes are merged.

How to Merge Source Control Files
1. Synchronize your files with the remote repository. If your local copy of the file is different

from the remote copy (e.g., another user has already pushed the same file to the remote),
the Resolve Conflicts dialog opens. See "Synchronizing Source Control Files" on page 31.

2. Click Auto Merge All. If changes from the other user do not conflict with your changes, this
will merge all changes. A message lets you know that a backup of your local copy has been
made. This lets you restore that file if you do not want to keep the merged version. You do
not need to complete the rest of the steps below.

However, if your changes conflict with those from another user, a message displays to tell
you. In this case, continue with the next step.

3. Click OK on the conflict message.

4. In the Resolve Conflicts dialog click Resolve. The Resolve Version Conflict dialog opens.
From this dialog, you can choose from the following options.

n Merge changes for me Automatically merges changes within the same file that are not
part of the same element. If changes have been made to the same element (e.g., the
same segment), Lingo will display a prompt to merge the changes using the merge
tool.

n Merge changes in merge tool Opens a merging interface, which lets you see exactly
what changes were made and choose which to keep.

n Undo my local changes Automatically removes your changes and keeps changes
from other users.

n Discard external changes Automatically removes changes from other users and
keeps your changes.

CHAPTER 3  37



5. If you selected the option to use the merge tool, the Merge Changes dialog opens. Use this
dialog to view and select changes. You can take actions in the following ways.

n Click a change You can click a change on either the remote or local side. This lets you
select a particular change. Use the key at the top of the merge changes dialog, as well
as the color coding on the local and server sides, to determine if a change has been
added (new), deleted, changed, or moved.

When you select a change, the change you selected will display with a solid colored
background, and the conflicting change will display with a striped background. If you
select the other change, the background shading will switch.

n Type content If you want to use your changes as well as those from another user, and
even tweak the paragraph a bit more, you can click in the area at the bottom of the
dialog and simply type content.

n Previous/next conflict When you are finished resolving the first conflict, you can use
the "Previous Conflict" and "Next Conflict" buttons at the bottom of the dialog to work
on other conflicts in the file.

6. After all conflicts have been resolved, a message lets you know that a backup of your local
copy has been made. This lets you restore that file if you do not want to keep the merged
version. Click OK.

CHAPTER 3  38



EXAMPLE

Two translators—Bob and Jill—are working on the same project, using source control to
manage the files.

Bob starts making changes to his local version of the "Jack and Jill" topic.

Jill also starts making changes to her local version of the topic. Jill's changes are in a
different segment in the topic than Bob's changes; there are no conflicts. She finishes
before Bob and synchronizes her files.

Bob finishes his changes and tries to synchronize his files. During the pull, Bob is
prompted with a dialog, indicating that changes from another user have already been
made.

Bob selects Auto Merge All. The changes from Bob and Jill are now both shown in the
merged topic. When either translator pulls the topic again or synchronizes their files, they
will see the new version of the topic.

CHAPTER 3  39



CHAPTER 4

Branch Activities for Git
A Git branch is a pointer to a snapshot of your changes, or you can think of it as a variation from
the original or main state of your files. Adding a branch lets you create a new development area for
your work. Then later, you can merge the branch into another one.

This chapter discusses the following:

Creating Branches 41

Publishing Branches 44

Switching Branches 48

Getting Remote Branches 54

Merging Branches 57

Reverting Branches 60

Deleting Branches 63

CHAPTER 4  40



Creating Branches
When you are working in Git, you can create branches.

How to Create Branches—Branch Management
Dialog

1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Branch.

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Branch.

The Branch Management dialog opens.

2. Click Create. The Create Branch dialog opens.

3. From the Source Branch drop-down, select the existing branch you want to use to create
the new branch. Your new branch will copy the existing files from the source branch, but
commits you make on the new branch will not affect the source branch.

4. In the Branch Name field, enter a name for your branch. Names cannot include spaces.

5. (Optional) If you want to switch the branch when you create it, select the Switch to branch
check box.

CHAPTER 4  41



WARNING You will not see a confirmation message when switching to a newly
created branch. Be sure all of your current changes are committed before creating
and switching to a new branch. If you have uncommitted changes, they will be lost.
See "Committing Source Control Files" on page 29.

6. Click Create. Your new branch is added to the "All branches" list. If you chose to switch to
the branch, you can now begin working on the branch.

CHAPTER 4  42



How to Create Branches—Source Control
Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches. The Branches view opens. In the
pane, you can see your current branch, as well as lists of your published and unpublished
branches.

3. Click Create Branch. The Create Branch dialog opens.

4. From the Source Branch drop-down, select the existing branch you want to use to create
the new branch. Your new branch will copy the existing files from the source branch, but
commits you make on the new branch will not affect the source branch.

5. In the Branch Name field, enter a name for your branch. Names cannot include spaces.

6. (Optional) If you want to switch the branch when you create it, select the Switch to branch
check box.

WARNING You will not see a confirmation message when switching to a newly
created branch. Be sure all of your current changes are committed before creating
and switching to a new branch. If you have uncommitted changes, they will be lost.
See "Committing Source Control Files" on page 29.

7. Click Create. Your new branch is added to the "All branches" list. If you chose to switch to
the branch, you can now begin working on the branch.

CHAPTER 4  43



Publishing Branches
If you want to push to, pull from, or synchronize using a branch you have created, you must publish
the branch. You can still commit to an unpublished branch, but until you publish, you will not be
able to send your commits to the remote repository. It is a good idea to publish branches unless
you are only using a branch locally for a short period of time.

You can publish branches in the following ways:

n Automatic If your current branch is unpublished, pushing, pulling, or synchronizing
automatically publishes the branch. See "Pushing Files to a Remote Repository" on page 34,
"Pulling Files From a Remote Repository" on page 26, and "Synchronizing Source Control
Files" on page 31.

n Manual Select an unpublished branch in the Source Control Explorer and manually publish
it. You can select any branch, even if it is not your current branch.

CHAPTER 4  44



How to Manually Publish Branches
1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches.

The Branches pane opens. In the pane, you can see your current branch, as well as lists of
your published and unpublished branches.

3. Select the unpublished branch you want to publish.

4. Click Publish Branch.

5. (Optional) If you did not commit your files before publishing the branch, a dialog asks if you
want to commit your files. Click Yes to continue. See "Committing Source Control Files" on
page 29.

NOTE You must commit all modified files before you can publish the branch.

CHAPTER 4  45



6. The Select Remote for Publish dialog opens. From the Remote drop-down, select the
repository you want to push to.

NOTE If you have pending changes that you are committing while publishing your
branch, you will see the Select Remote for Push dialog. However, the steps for
pushing while publishing a branch are the same. See "Pushing Files to a Remote
Repository" on page 34 for additional information.

7. (Optional) To add or remove a remote repository, click . The Remote Repositories dialog
opens.

TO ADD A REMOTE REPOSITORY

a. In the Remote Repository field, enter the address of the new repository.

NOTE You may need to obtain this information from your system
administrator.

b. In the Alias field, enter a name for the new repository. This is the name that will appear
in the Remote drop-down when you need to select a remote repository.

NOTE Repository names cannot include spaces.

CHAPTER 4  46



c. Click Add to add the new repository to the list of available repositories.

d. Click OK.

TO REMOVE A REMOTE REPOSITORY

a. From the Remote Repository list, select the repository you want to delete.

b. Click Remove. The repository is removed from the list of available repositories.

c. Click OK.

8. In the Select Remote for Publish dialog, click OK. If the Log In dialog opens, complete the
User name and Password fields and click OK. Your branch is published and added to the
Published Branches list.

CHAPTER 4  47



Switching Branches
If you have created more than one branch, you can switch to, or select, the branch you want to
work with. When you switch to a new branch, you will see the files associated with that branch, and
any new commits will be associated with the selected branch. There are multiple ways to switch
branches. One of the benefits of using the Branch Management dialog is that you can switch to
either local or remote branches.

WARNING You should commit all of your current changes before switching branches. If
you have uncommitted changes when you switch branches, they will be lost.

CHAPTER 4  48



How to Switch Branches—Status Bar
1. Make sure the status bar is enabled (View > Status Bar).

2. In the lower-right of the interface, click the branch drop-down, which displays the branch that
is currently active. Then, select the branch you want to switch to. If you do not have any
pending changes, your branch switches.

CHAPTER 4  49



How to Switch Branches—Submenu
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Branch.

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Switch Branch.

2. From the submenu, select the branch you want to use. If you do not have any pending
changes, your branch switches.

NOTE Your current branch is marked in the submenu.

CHAPTER 4  50



How to Switch Branches—Branch Management
Dialog

1. (Optional) With any branch selected as the active one, do a pull. This makes all remote
branches available for selection in the Lingo interface, even if you haven't yet added a
remote branch locally.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Lingo, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Branch.

3. Select the Locals or Remotes tab, depending on which kind of branch you want to select.
Switching to a remote branch will add it to the Locals tab, and make that branch the active
one in the Lingo interface.

4. Select the branch you want to get (i.e., check out), and click Switch.

5. Close the Branch Management dialog.

CHAPTER 4  51



How to Switch Branches—Source Control
Explorer
You can also switch branches using the Source Control Explorer. You can view a list of published
and unpublished branches in the Source Control Explorer, so this method is preferable if you want
to pick a branch by its publication status.

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches.

The Branches pane opens. In the pane, you can see your current branch, as well as lists of
your published and unpublished branches.

3. Select the branch you want to switch to.

4. Click Switch Branch. If you do not have any pending changes, your branch switches.

CHAPTER 4  52



Switching With Pending Changes
If there are pending changes on your current branch, a dialog asks if you want to switch branches
and discard your modifications. This is because the changes were made on the current branch,
and do not carry over when you switch branches.

n Click Yes to switch branches. Your changes will be lost.

n Click No to cancel the switch. Commit your changes before attempting the switch again. See
"Committing Source Control Files" on page 29.

CHAPTER 4  53



Getting Remote Branches
If there is a branch on your remote repository, you might want to add it locally so you can work in it.
This can be done from the Branch Management dialog, which lets you see both local and remote
Git branches.

CHAPTER 4  54



How to Get a Remote Branch
1. With any branch selected as the active one, do a pull. This makes all remote branches

available for selection in the Lingo interface, even if you haven't yet added a remote branch
locally.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Lingo, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Branch.

3. Select the Remotes tab.

CHAPTER 4  55



4. Select the branch you want to get (i.e., check out) from the remote repository, and click
Switch. This adds the branch to the Locals tab, and it also makes that new local branch the
active one in the Lingo interface.

5. Close the Branch Management dialog.

CHAPTER 4  56



Merging Branches
There are times where you may have to merge branches into a common branch.

How to Merge Branches in Git
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Merge.

n Right-Click If you have the File List window pane open, right-click any file and select
Source Control > Project > Merge.

n Source Control Explorer From the drop-down, select Branches. Then select any
branch except the active one, and click the Merge Branch button.

The Select branch to merge dialog opens.

2. From the drop-down list, select the Git branch you wish to merge into the active branch.

3. Click OK. A dialog will display the status of the merge in progress.

CHAPTER 4  57



4. When the merge operation is completed, a dialog will display indicating the merge was a
success. Click OK to close the dialog.

EXAMPLE

You have two feature branches that are bound in Git source control.

In the first feature branch (develop-feature1), you make changes to a file called “Getting-
Started” and commit those changes. These changes are specific to the first feature being
developed.

In the second feature branch (e.g., develop-feature2), you make changes to the same
"Getting-Started" file and commit those changes. These changes are specific to the
second feature being developed, and are being made in a separate part of the topic from
the develop-feature1 changes.

After you complete and commit your changes on the second feature branch, you decide
you want to merge your changes from the first feature branch to the second feature
branch.

CHAPTER 4  58



In the Source Control Explorer, you select the develop-feature2 branch. Then, you click
the Merge Branch button. From the drop-down, you select develop-feature1.

You click OK to merge. Since the changes took place in different sections of the "Getting-
Started" file, the merging of the first feature branch into the second feature branch is
successful.

CHAPTER 4  59



Reverting Branches
A revert is a type of commit that undoes a prior commit on your branch. Reverting becomes
necessary if changes have been made that are no longer needed. For example, if you have
committed changes for a feature branch that is no longer going to be included in a release, those
changes need to be reverted.

In the Source Control ribbon, the Branch History button displays your history of commits on the
active Git branch. This dialog displays the history in descending order, with the most recent action
displayed on the top line.

An advantage of reverting a prior commit on your branch is that it will back out any unwanted
changes. If other writers are making changes on the same branch, any reverted commits will be
picked up by the other writers when they pull from that branch.

But one disadvantage of reverting commits in your branch is that it will remove part of your branch
history. The revert removes the part of your branch history that contained the commits that were
undone.

CHAPTER 4  60



How to Revert Commits in a Git Branch
1. In the Source Control Explorer, select your branch containing changes that you want to

revert.

2. In the Source Control ribbon, click Branch History. The dialog that opens lets you view and
revert specific commits within your branch.

The following columns are displayed:

n Commit Type This indicates the type of changes checked in on the branch. You can
view when a branch was started, when a commit was made, or when a merge
occurred.

n Branches This column displays the branches that are affected by the action taken. If
the changes affect more than one branch then all of the affected branches are
displayed in this column.

n Commit This alphanumerical code provides the commit number used by Git.

n Commit Time This displays the date, followed by the time the commit was made in
your Git branch.

n Author This displays the name of the author that committed the specific change in the
branch.

n Comments This column displays the comments made for each commit.

CHAPTER 4  61



3. Select the row that contains the commit you want to back out.

4. Click Revert.The Accept reverted modifications dialog is displayed.

5. Click Accept.

6. A confirmation message confirms the revert was successful. Click OK to close this dialog.

CHAPTER 4  62



Deleting Branches
If you no longer need a branch, you can delete it. This also deletes any commits on that branch.
The Branch Management dialog lets you delete either local or remote branches, or both.

You can delete any branch except the current branch. If you need to delete the current branch, you
will have to switch to a different branch first. See "Switching Branches" on page 48.

How to Delete Branches—Branch Management
Dialog
The benefit of using the Branch Management dialog is that you can choose either local or remote
branches to remove.

1. Make sure the branch you want to delete is not the active branch.

2. Open the Branch Management dialog in one of the following ways:

n Status Bar In the lower-right of Lingo, click the name of the active branch.

NOTE If you do not see this option, make sure View > Status Bar is enabled.

n Ribbon Select Source Control > Branch (the face of the button, not the drop-down).

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Branch.

3. Select the Locals or the Remotes tab, depending on which branch you want to delete. If you
want to delete a branch both locally and remotely, select either tab.

CHAPTER 4  63



4. Select the branch you want to remove and click Delete.

5. If you selected a local branch, you are asked if you also want to delete the remote branch (if
one exists). Click the check box if you do; otherwise, leave it disabled.

If you selected a remote branch, you are asked if you also want to delete the local branch (if
one exists). Click the check box if you do; otherwise, leave it disabled.

CHAPTER 4  64



6. Click OK.

7. Close the Branch Management dialog.

CHAPTER 4  65



How to Delete Branches—Source Control
Explorer

1. Select View > Source Control Explorer. The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Branches. The Branches view opens. In the
pane, you can see your current branch, as well as lists of your published and unpublished
branches.

3. Select the branch you want to delete. You can delete any branch except the current branch.

4. Click Delete Branch.

5. A dialog asks if you want to proceed. By clicking the check box in the dialog, you can also
delete the remote branch (if one exists).

Click OK. The branch is removed from the list.

CHAPTER 4  66



CHAPTER 5

Other Activities for Git
In addition to the main activities, there are some other tasks you might perform regarding this
feature.

This chapter discusses the following:

Adding and Editing an Ignore File 68

Disabling the Get Latest Prompt for Source Control 72

Disabling a Git Provider 73

Enabling Source Control Status Checks 76

Modifying Network Settings 77

Reverting Modified Source Control Files 80

Rolling Back to an Earlier Version of a File 81

Setting Color Options for Project File Differences 87

Unbinding a Git Provider From a Project 89

Using Git for Windows 93

Viewing Differences in Source Control Files 95

Viewing Modified Files 98

Viewing the History of Source Control Files 100

CHAPTER 5  67



Adding and Editing an Ignore File
The .git folder is the local repository for a Lingo project and is included when your project is bound
to Git. The contents of this folder are updated automatically when you perform source control
tasks. The additional .gitignore file is necessary to make sure that certain folders are ignored when
you push and pull files. In most cases, you do not need to do anything with the .git folder or
.gitignore file.

If you bind a project to Git outside of Lingo (i.e., you do not use Lingo's interface to do the binding),
you should make sure that you have a .gitignore file. You can add the .gitignore file by selecting an
option in the Source Control Explorer or Project Properties dialog. Once you have a project
containing a .gitignore file, the button in the interface changes to "Edit Ignore File," so that you can
open the file to make edits to it.

CHAPTER 5  68



How to Add an Ignore File
The following steps show how to do this in the Source Control Explorer. You can also accomplish
this in the Project Properties dialog (File > Project Properties) on the Source Control tab.

1. Select View > Source Control Explorer.

2. Do one of the following:

n Click Settings. Then in the Ignore File section, Create Ignore File.

CHAPTER 5  69



n Click Pending Changes. Then next to the message at the top, click Add.

3. Make edits in the Text Editor and save your changes.

CHAPTER 5  70



How to Edit an Ignore File
The following steps show how to do this in the Source Control Explorer. You can also accomplish
this in the Project Properties dialog (File > Project Properties) on the Source Control tab.

1. Select View > Source Control Explorer.

2. Click Settings.

3. In the Ignore File section, click Edit Ignore File.

4. Make edits in the Text Editor and save your changes.

CHAPTER 5  71



Disabling the Get Latest Prompt for
Source Control

By default, when you open a project that is bound to source control, a message automatically asks
if you want to get the latest version of files. However, you can disable this prompt in the Source
Control tab of the Options dialog (File > Options). Therefore, in the future when you open the
project you will no longer see the message, and the project will open without replacing any local
files with the latest ones from source control.

How to Disable the Get Latest Prompt for Source
Control

1. Select File > Options. The Options dialog opens.

2. Select the Source Control tab.

NOTE This tab will not be visible if your project is not yet bound to source control.
See "Binding a Project to Git" on page 14.

3. Click the check box Do not prompt to get latest when opening source control bound
projects.

4. Click OK.

CHAPTER 5  72



Disabling a Git Provider
By default, when a project is bound to source control, the provider (Git, Perforce Helix Core,
Subversion, or Team Foundation Server) is enabled. This means that the source control interface
elements in Lingo are visible, and you can use them to perform various tasks (e.g., commits,
synchronize changes).

Disabling a provider means that the source control interface elements are no longer shown. This
does not mean you cannot use source control. As long as the provider is still bound to the project,
you can perform source control tasks in a third-party tool outside of Lingo.

How to Disable a Provider for All Projects
Globally
This is the easiest method if you have multiple projects and you want to disable the Git provider in
Lingo for all of them.

1. Select File > Options.

2. Select the Source Control tab.

3. In the Bind Detection section, remove the check mark next to Git.

4. Click OK.

5. Close the project and then reopen it so that the option can take effect.

The provider option that is found in the Project Properties dialog or the Settings view in the
Source Control Explorer (i.e., the "Enabled" check box) will then automatically be disabled.

CHAPTER 5  73



How to Disable a Provider in an Individual
Project
Use this method if you want to disable a provider in just one project, rather than many projects.

1. Do one of the following, depending on the part of the user interface you are using:

n Project Properties Select File > Project Properties.

n Source Control Explorer Select View > Source Control Explorer. Then, in the
window pane, click Settings.

2. Click Enabled to remove the check mark.

3. If you used the Project Properties dialog, click OK.

What’s Noteworthy?

NOTE If you disable a Git provider, the local repository will continue to track your changes
in case you later decide to enable the provider once again.

If you disable one of the other providers (Perforce Helix Core, Subversion, Team
Foundation Server), your changes after that point will not be tracked. Therefore, if you later
enable the provider again, it will not have recorded any changes made since the time that
you disabled it.

NOTE When you disable a provider, that information is written to the registry on your
computer.

CHAPTER 5  74



NOTE If you disable a provider, but then perform one of the following actions in the Lingo
interface, the provider will automatically become enabled once again.

n Bind an existing project

n Bind a new project

n Import a project from source control

NOTE Having a provider enabled in Lingo does not interfere with your workflow if you are
performing source control actions exclusively outside of Lingo. Even if a provider is
enabled in the project and the source control user interface elements are visible, this does
not mean Lingo is automatically performing any source control actions with your files. It
simply means Lingo is recognizing the binding, so it reflects your activities (e.g., the
Pending Changes window is populated when you make edits in topics). However, if you
prefer not to see any of this in Lingo, you can disable the provider.

CHAPTER 5  75



Enabling Source Control Status
Checks

If you are using source control integration in Lingo, you can check for frequent status changes
automatically. You can specify the number of minutes and seconds when you want Lingo to ping
the source control repository and get status changes for files that have been committed,
synchronized, moved, deleted, etc. The upside of this feature is that you can ensure that the
source control status information is always up to date. The downside is that you may experience
slower performance due to this constant communication over the network.

How to Enable Source Control Status Checks
1. Select File > Options. The Options dialog opens..

2. Select the Source Control tab.

NOTE This tab will not be visible if your project is not yet bound to source control.
See "Binding a Project to Git" on page 14.

3. Click the check box Enable background status checks. A check mark in the box indicates
that the feature is enabled.

4. Enter the number of minutes and or seconds between each status update.

5. Click OK.

NOTE If you elect to disable this feature (disabled is the default setting), you can
manually check for status updates by refreshing the Pending Changes window pane or
Source Control Explorer. See "Viewing Modified Files" on page 98.

CHAPTER 5  76



Modifying Network Settings
You can view and change various source control network settings while working in Lingo.

How to Modify Network Settings
1. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Network Settings.

n Right-Click If you have the File List open, right-click on any file and select Source
Control > Project > Network Settings.

n Local Toolbar In the local toolbar of the File List, click , then select Project >
Network Settings.

n Source Control Explorer From the View ribbon, open the Source Control Explorer.
From the drop-down, select the Home Page view. Click Network Settings.

The Network Settings dialog opens.

2. In the Group field, select the group for which you want to change the settings.

OR

Do one of the following:

n (Optional) If you want to add a custom group, type its name in the Group field, then
click Add.

n (Optional) If you want to remove a group, select it from the Group field, then click
Remove.

3. (Optional) If you entered a custom group name, in the Remote Host field, enter the name of
the domain to which the network settings should apply.

CHAPTER 5  77



4. In the grid, make changes to the network settings as necessary. Click to sort the settings

by category, or click to sort them alphabetically.

GIT NETWORK SETTINGS

n Cookies

l Cookie File

l Save Cookies

n HTTP Proxy Options

l Proxy Host

n Identity

l User Agent

n Performance

l Enable EPSV

l Max Requests

l Maximum High Latency Time

l Min Sessions

l Minimum Transfer Speed

l POST Buffer Maximum

n SSL Configuration

l SSL CA File

l SSL CA Path

l SSL Certificate

l SSL Key File

CHAPTER 5  78



l SSL Password Prompt

l Try SSL

l Verify SSL

NOTE For more information about each of these settings, refer to:

https://git-scm.com/docs/git-config

5. Click Save.

CHAPTER 5  79



Reverting Modified Source Control
Files

If you have modified files from source control but do not want to keep your modifications, you can
use the "Revert" option instead of committing the files. While committing the file would save your
changes to source control, reverting a file returns it to its previously committed state and does not
commit any of your new changes to source control. When reverting changes made in Git, you only
revert changes to the file on the branch you are currently editing. If you have a file that resides on
multiple branches, copies of the file on other branches are preserved.

How to Revert a Source Control File
1. In the Source Control Explorer or File List, select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Revert (for selected files) or Source Control >
Revert All (for all files in the project).

n Right-Click In the File List, right-click the files you want to revert and select Source
Control > Revert (for selected files) or Source Control > Project > Revert All (for all
files).

n Local Toolbar In the File List, select the file(s) you want to revert. In the local toolbar of

the File List, click , then select Revert (for selected files) or Project > Revert All
(for all files in the project).

A dialog opens. The selected files are listed with check boxes next to them.

3. (Optional) If you want to see all files with pending changes (rather than only those you
selected), click .

4. Make sure to click the check box next to each appropriate file so that it contains a check
mark.

5. Click Revert.

CHAPTER 5  80



Rolling Back to an Earlier Version of a
File

One of the benefits of Lingo's integrated source control is that you can view the history and
differences for a particular file. You can view code and content differences between two source
control versions of the same file. This is useful if you need to roll back to an earlier version of a file.

See "Viewing the History of Source Control Files" on page 100 and "Viewing Differences in Source
Control Files" on page 95.

EXAMPLE You have been working on translating a particular topic for a few days. Each
day you pull the remote commits to your local database, make your changes, and commit
and push the file back to the remote repository at the end of the day. At a certain point, you
determine that you need to "roll back" to an earlier version of the file, using it to replace the
latest version. Therefore, you use this feature to view the highlighted differences between
the current version and an older version of the file. Once you have identified the older
version that you want to use, you can retrieve that version.

CHAPTER 5  81



How to Roll Back to an Earlier Version of a File
1. In the Source Control Explorer or File List, select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the File List open, right-click the file you want to roll back and
select Source Control > View History.

n Source Control Explorer With the Pending Changes pane open, right-click the file you
want to roll back and select View History.

The History dialog opens.

3. (Optional) View the differences between two versions of the file. This may help you decide
which version of the file you want to retrieve. (Another way is to look at the dates for each
version in the History dialog.)

To view the differences, follow these steps.

a. Select the first file version from the list.

b. Hold the CTRL key and select the second file version from the list.

c. Click Show Differences. The Differences Editor opens to the right, showing content
from the backup file on the left and the current version of the file on the right.

d. In the local toolbar of the Differences Editor, you can click any of the following to make
adjustments.

n Options Click this to open the File Differences dialog, which lets you change the
colors used to display content differences between the files.

CHAPTER 5  82



n Ignore Case Click this to ignore changes in case when viewing differences.

EXAMPLE If a word is not capitalized in the original file but it is
capitalized in the current file, this option does not highlight those
differences.

CHAPTER 5  83



CHAPTER 5  84



n Ignore Whitespace Click this to ignore whitespace when viewing differences.

EXAMPLE A segment is identical in both files, except for an extra
space that was added within the segment in one of those files. If you
click this option, that difference is not highlighted.

CHAPTER 5  85



e. When you are finished viewing the differences, close the window pane.

4. In the History dialog, select the version of the file to which you want to roll back.

5. Click Get Selected Version. That file is retrieved from the server and replaces the local copy
of the file in your project.

6. In the History dialog, click Close.

CHAPTER 5  86



Setting Color Options for Project File
Differences

If you are using Lingo's integrated source control features, you can view differences between files
in various ways. One way is to view file differences between a local version of a Lingo project and
the source control version.

When viewing file differences between a local version of a Lingo project and the source control
version, you can select color options to display the files. Color coding makes it easier to discern
where differences between files occur.

For more information see "Viewing Differences in Source Control Files" on page 95.

EXAMPLE By default the files that are included only in your local copy are displayed as
green in the Differences Editor, and the files that are included only in source control are
displayed in red. You can use this dialog to change the local-only files to blue and the
source control–only files to yellow.

CHAPTER 5  87



How to Set Color Options for Project File
Differences

1. In the Source Control Explorer or File List, select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Show Differences.

n Right-Click If you have the Source Control Explorer or File List open, right-click the file
you want to view and select Source Control > Show Differences.

n Local Toolbar In the File List, select the file(s) you want to view. In the local toolbar of

the File List, click , then select Show Differences.

The Differences Editor opens.

3. In the local toolbar of the Differences Editor, click Options. The File Differences dialog
opens.

4. Change the text or background color for any of the difference types. To do this, simply click
in the appropriate Text or Background cell and select Pick Color. In the Color Picker dialog,
choose the new color.

5. Click OK.

CHAPTER 5  88



Unbinding a Git Provider From a
Project

When you unbind a provider, it means you are removing the connection altogether between the
Lingo project and the local repository.

CHAPTER 5  89



How to Unbind a Provider in the Project
Properties

1. Open the project.

2. Select File > Project Properties.

3. Select the Source Control tab.

4. Click Unbind Provider.

5. Click OK.

CHAPTER 5  90



How to Unbind a Provider in the Source Control
Explorer

1. Open the project.

2. Select View > Source Control Explorer.

3. From the drop-down or the Home pane, select Settings. The Settings pane opens.

4. Click Unbind Provider. (If your project is dual-bound, you will also see a section for the other
binding.)

5. In the confirmation dialog, click Yes.

CHAPTER 5  91



What’s Noteworthy?

NOTE You can also disable a provider, which retains the binding but hides source control
elements from the user interface.

CHAPTER 5  92



Using Git for Windows
In Windows 10 version 1903, Microsoft implemented OpenSSH, which is the open-source version
of Secure Shell (SSH). As a result, a project bound to Git using SSH as the transfer protocol might
experience error messages (e.g., failed to start SSH session). The solution is to download and
install Git for Windows (Git.exe).

An upside to installing Git.exe is that it is likely to result in faster and better performance for file
transfers.

How to Download and Install Git.exe
1. Select File > Options.

2. Select the Source Control tab.

3. Click Get Git for Windows. A page opens on your browser, and the download should begin
automatically. If it doesn't, click the link on the web page to download it.

NOTE If you already have Git.exe installed, but not the latest version, this link will
instead display “Get an updated version of Git for Windows.”

4. When the download finishes, open it.

CHAPTER 5  93



5. Follow the steps in the wizard. We recommend you keep the default selections.

6. After you click Install and the installation completes, click Finish.

After a few moments, the link in the Options dialog should go away and you should see this
instead:

7. Click OK.

CHAPTER 5  94



Viewing Differences in Source Control
Files

One of the benefits of Lingo's integrated source control is that you can view the history and
differences for a particular file.

Ways to View Differences Between Files
You can view differences between files in the following ways:

n Two Versions of Same Source Control File (History/Roll Back) You can view code and
content differences between two source control versions of the same file. This is useful if you
need to roll back to an earlier version of a file.

EXAMPLE You have been working on translating a particular topic for a few days.
Each day you pull the remote commits to your local database, make your changes,
and commit and push the file back to the remote repository at the end of the day. At a
certain point, you determine that you need to "roll back" to an earlier version of the
file, using it to replace the latest version. Therefore, you use this feature to view the
highlighted differences between the current version and an older version of the file.
Once you have identified the older version that you want to use, you can retrieve that
version.

n Local Versus Source Control Version of a File You can view code and content differences
between the local version of a file and the source control version of that file.

EXAMPLE You open a topic from source control and then make changes to some
of the translations in your local copy of that file. You save your changes. Later that
day, you want to revisit the new translations, but you cannot remember exactly which
translations you added and which were there before. Therefore, you use this feature
to highlight the text differences between your local version of the file and the version
stored in the source control application. The new text is highlighted on the side
displaying the local version of the file.

CHAPTER 5  95



How to View Differences Between Two Versions
of the Same Source Control File

1. In the Source Control Explorer or File List, select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the Source Control Explorer or File List open, right-click the file
(s) you want to view and select Source Control > View History.

n Local Toolbar In the File List, select the file(s) you want to view. In the local toolbar of

the File List, click , then select View History .

The History dialog opens.

3. From the list, select the first file version that you want to compare.

4. Hold the CTRL key and select the second file version from the list.

5. Select Show Differences. The Differences Editor opens.

6. (Optional) In the Differences Editor, use the buttons in the local toolbar to customize the
information shown in the editor.

7. When you are finished viewing the differences, close the window.

CHAPTER 5  96



How to View Differences Between the Local and
Source Control Versions of a File

1. In the Source Control Explorer or File List, select the relevant file(s).

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > Show Differences.

n Right-Click If you have the Source Control Explorer or File List open, right-click the file
(s) you want to view and select Source Control > Show Differences.

n Local Toolbar In the File List, select the file(s) you want to view. In the local toolbar of

the File List, click , then select Show Differences.

The Differences Editor opens.

3. (Optional) In the Differences Editor, use the buttons in the local toolbar to customize the
information shown in the editor.

4. When you are finished viewing the differences, close the window.

What’s Noteworthy?

NOTE When you modify a file in source control, you are actually modifying the file's
corresponding XLF file. You will see the XLF file if you open the Source Control Explorer.
This is because you need the XLF file available in order to make changes, view the file's
history, or view differences.

CHAPTER 5  97



Viewing Modified Files
You can use the Source Control Explorer to view all of the files that you have modified and need to
commit.

How to View Modified Files—Source Control
Explorer

1. Select View > Source Control Explorer.

The Source Control Explorer opens.

2. From the drop-down or the Home pane, select Pending Changes.

The Pending Changes pane opens. Files that you have changed appear in the Included
Changes or Excluded Changes section (depending on whether you are going to include or
exclude them in your next commit; see "Committing Source Control Files" on page 29). You
will not see other users' changes in the Source Control Explorer.

3. Take note of the file's status. The status is written in brackets next to the file name (e.g., edit,
add).

CHAPTER 5  98



What’s Noteworthy?

NOTE You can click the refresh button in the local toolbar to make sure you have the
most recent status for each file. Another option is that you can use a feature to
automatically ping the source control repository periodically, thus refreshing this
information frequently. However, you may experience slower performance with this
automatic status update option set. See "Enabling Source Control Status Checks" on page
76.

NOTE When you modify a file in source control, you are actually modifying the file's
corresponding XLF file. You will see the XLF file if you open the Source Control Explorer.
This is because you need the XLF file available in order to make changes, view the file's
history, or view differences.

NOTE When you modify a file in source control, you may sometimes see a SKL file
alongside the XLF and original files. This skeleton file is a placeholder file. Be sure to
commit all three associated files together. Committing just the SKL file may result in errors.

CHAPTER 5  99



Viewing the History of Source Control
Files

One of the benefits of Lingo's integrated source control is that you can view the history for a
particular file, including who committed the file and when it was committed. You can also view
differences between different versions of the file and roll back to an older version if necessary.

For more information see "Viewing Differences in Source Control Files" on page 95 and "Rolling
Back to an Earlier Version of a File" on page 81.

How to View the History of a Source Control File
1. In the Source Control Explorer or File List, select the relevant file(s).

OR

Open a file.

2. Do one of the following, depending on the part of the user interface you are using:

n Ribbon Select Source Control > View History.

n Right-Click If you have the Source Control Explorer or File List open, right-click the file
you want to view and select Source Control > View History.

n Local Toolbar In the File List, select the file(s) you want to view. In the local toolbar of

the File List, click , then select View History .

3. The History dialog opens. Following are explanations of the different parts of this dialog.

n Version Displays a number for each version of the file. The lower the number, the
older the version. The higher the number, the more recent the version.

n Users Displays the name of the user who has been working on the file.

n Date Displays the date and time when the action has occurred.

n Action Displays the action that has taken place for the file (e.g., modified).

CHAPTER 5  100



n Comment Displays the comment (if any) associated with the file. A comment can be
added to a file when you commit that file to source control. This enables you to
maintain an audit trail for the file's history.

n Get Selected Version Retrieves a particular version of a file, thus rolling back to that
version of the file. The local version of the file is replaced with the source control
version that you selected.

n Show Differences Opens a dialog where you can view the differences between two
versions of a file. If you select one row in the History dialog and view the differences,
you will see the content differences between the version that you selected and the
version of the file in your local copy of the Lingo project. If you select two files in the
History dialog (by holding down the CTRL key) and view the differences, you will see
the content differences between those two versions of the file.

4. In the History dialog, click Close.

NOTE When you modify a file in source control, you are actually modifying the file's
corresponding XLF file. You will see the XLF file if you open the Source Control Explorer.
This is because you need the XLF file available in order to make changes, view the file's
history, or view differences.

CHAPTER 5  101



APPENDIX

PDFs
The following PDFs are available for download from the online Help.

Cheat Sheets
Shortcuts Cheat Sheet

User Guides
Alignment Guide

Getting Started Guide

Key Features Guide

Source Control Guide: Git

Source Control Guide: Perforce Helix Core

Source Control Guide: Subversion

Source Control Guide: Team Foundation Server

Termbases Guide

APPENDIX  102



Touring the Workspace Guide

Translation Guide

What's New Guide

APPENDIX  103


	CHAPTER 1
	Introduction

	CHAPTER 2
	General Information for Git
	Common Source Control Terms
	Source Control Icons
	Bind Detection, Disabling Providers, and Unbinding Providers


	CHAPTER 3
	Process for Git
	Binding a Project to Git
	Importing From Git
	Pulling Files From a Remote Repository
	Committing Source Control Files
	Synchronizing Source Control Files
	Pushing Files to a Remote Repository
	Merging Source Control Files


	CHAPTER 4
	Branch Activities for Git
	Creating Branches
	Publishing Branches
	Switching Branches
	Getting Remote Branches
	Merging Branches
	Reverting Branches
	Deleting Branches


	CHAPTER 5
	Other Activities for Git
	Adding and Editing an Ignore File
	Disabling the Get Latest Prompt for Source Control
	Disabling a Git Provider
	Enabling Source Control Status Checks
	Modifying Network Settings
	Reverting Modified Source Control Files
	Rolling Back to an Earlier Version of a File
	Setting Color Options for Project File Differences
	Unbinding a Git Provider From a Project
	Using Git for Windows
	Viewing Differences in Source Control Files
	Viewing Modified Files
	Viewing the History of Source Control Files


	APPENDIX
	PDFs
	Cheat Sheets
	User Guides



